Pieces of Chocolate: Site Structure and Function at Chocolate Plantation (9MC96), Sapelo Island, Georgia

By

Nicholas Honerkamp
Jeffery L. Brown Institute of Archaeology, University of Tennessee at Chattanooga

Ray Crook
Waring Archaeological Laboratory, Department of Anthropology, University of West Georgia

Orion Kroulek
Department of Sociology and Anthropology, New Mexico State University

January, 2007
List of Tables

Table 1. Feature List, 2006 Chocolate Plantation Survey .. 28
Table 2. Chocolate Plantation Artifact Groups and Classes ... 38
Table 3. Historic Ceramic Types From Chocolate .. 39
Table 4. Aboriginal Ceramics From Chocolate .. 47
Introduction

The origin of Chocolate Plantation (9MC96) as a historic and as an archaeological entity involves a complex narrative. Located on the west side of Sapelo Island, directly adjacent to the Mud River (Figures 1 and 2), Chocolate is situated in an area that proved to be suitable for both prehistoric and historic habitation, a claim that will become abundantly clear in this report. In fact, although this site possesses numerous substantial tabby ruins, it was first defined in the Georgia State Site File on the basis of prehistoric remains, and its very name may be derived from a protohistoric Native American settlement. Several decades of research on Sapelo Island have demonstrated the presence of extensive human habitations spanning millennia; the present study provides an unambiguous sense of both the multicomponent nature and longevity of cultural components at 9MC96.

This report presents basic data on the presence (and absence) of archaeological resources generated from excavating and screening a large number of survey units on a systematic grid constructed over the entire c. 3.7 hectare site. Due primarily to the presence of numerous and extensive antebellum tabby structural foundations, previous archaeological approaches have understandably been concentrated on those remains. Complementing earlier work, the present study provides baseline survey data for the entire site, rather than a structure-oriented subset.

Geophysical Setting

Sapelo Island is the fourth largest of six barrier islands along the Georgia coast. Situated in the Atlantic Coastal Plain Province (Thornbury 1965), it originated in the late Pleistocene and Holocene (Hoyt and Hails 1967). Sapelo measures 10 miles long and three wide, and is separated from the mainland by about five miles of tidal creeks, estuaries, and *spartina* salt marsh. At seven feet, tidal ranges are dramatic, alternately filling and draining the marsh and creeks twice daily. The island contains a wide range of ecosystems that can be grouped into three major communities: marine, aquatic, and terrestrial. Besides the extensive marsh and estuary-creek system, the marine community also encompasses the ocean shoreline on the east, with its relatively shallow offshore water depths (Henry and Hoyt 1963). The aquatic system includes fresh water ponds and their associated plant and animal communities. The terrestrial system includes upland and lowland forest species, with a profusion of majestic live oaks, pine forests, and saw palmetto in the interior.

Of course, all three communities have experienced human modification to a greater or lesser extent, as they are a consequence of a long history of natural and cultural formations, interactions, and alteration; our almost daily encounters with feral cattle and hogs when traveling to and from the site were conspicuous examples of cultural “add-ons.” The natural-cultural interactions began with Native American farming activities and include the extensive clearing (and sometimes draining) associated with historic timber extraction, farming, and construction that continue to this day. Not surprisingly, most habitation sites, both prehistoric and historic, are found on high ground adjacent to navigable waterways (McMichael 1980); such is the case for Chocolate (see Figure 1).

According to the 1961 Soil Conservation Service map of McIntosh County, the site vicinity is uniformly characterized by “Ona and Scranton fine sands, alkaline variants” (USDA 1961:62). The soil association for this area is described as “Somewhat poorly drained to very poorly drained on broad, nearly level uplands and in bays.” The stratigraphic equivalent of this
Figure 1. Map of Sapelo Island Showing Major Sites and Settlements.
description was seen in the fairly consistent profiles encountered in most of the survey units dug, as indicated below.

Historical Background: The Place Known as Chocolate

Visitors to Sapelo Island traveling the narrow, Live Oak shrouded High Point Road along its western edge have passed a place called Chocolate (Figure 2) for at least two centuries and probably for well over 500 years. Chocolate is a place of thick historical fact and blended fiction. Legend-influenced historical writings (e.g. Lovell 1932) have John de Berard Mocquet Montalet, a French planter who had fled the 1791 Santo Domingo slave revolt, residing at Chocolate – a name said to be a corruption by island blacks of his Le Châtelet (O’Grady 1980). The popular story goes on to tell of the old Marquis de Montalet and his gentleman companion, Chevalier de la Home, leading a quiet life on the small plantation tending their fruit trees, growing flowers, hunting truffles with pigs on leashes, and instructing a talented slave named Cupidon in the fine art of preparing French cuisine. More recent scholarship instead places John Montalet at Sapelo’s High Point between 1805 and 1814, and also reveals that the name Chocolate almost certainly derives from a 16th-century Native American town known as Chucalate. While solid historical information has been discovered about Chocolate in particular and Sapelo Island more generally, many gaps still exist to be filled by archival and archaeological research. The overview that follows relies principally on the published research.

![Figure 2. Satellite View of the Northern End of Sapelo Island, Showing the Location of Chocolate (Google Earth image).](image)

The first English settlement at Chocolate appears to have occurred during the mid-1700s, when Sapelo along with St. Catherines and Ossabaw Islands were claimed, by virtue of a disputed grant from the Creek Indian chief Malatchi, by Mary Musgrove (Coosaponakeesa) and her husband Thomas Bosomworth. Seeking official recognition and validation of her claim, Musgrove and Bosomworth traveled to England in 1754 to plead their case. Although the claim was left unresolved by the Board of Trade, Musgrove and Bosomworth met with a London merchant named Isaac Levy and convinced him that their title to the islands was genuine. On October 14, 1754 Musgrove and Bosomworth agreed to sell to Levy a moiety, or undivided half title, in the islands of Ossabaw, St. Catherines, and Sapelo for 300£ and other considerations, including an additional 200£ from the “first rents produced or profits which should be received” by Levy from his ventures on the islands (Levy 1759b, Levy 17??a). Soon thereafter, “on obtaining this conveyance [Levy] settled all his affairs in England & went to live and reside in America and hath been at great Expences in improving his aforesaid Acquisition” (Levy 1760) and he endeavored, again at great expense, “to settle & cultivate the said lands” (Levy 1767).

The British Crown never recognized Musgrove and Bosomworth’s claim to the islands and pursued negotiations with the Creek Indians that resulted in a treaty (the Articles of Friendship and Commerce) which ceded ownership of Ossabaw, St. Catherines, and Sapelo Islands along with another tract of Indian Land near the Town of Savannah to Great Britain in 1757. Henry Ellis, Royal Governor of Georgia, then negotiated a separate agreement with Musgrove and Bosomworth to settle their claims and demands. Musgrove received compensation for her past services to Crown, through the proceeds of a public auction of Sapelo and Ossabaw Islands. She and Bosomworth also were granted title to St. Catherines Island where they resided and had made improvements.

Published notice for the public auction of Sapelo and Ossabaw Islands to be held in Savannah on December 10, 1759 came as a complete surprise to Isaac Levy, who now was living in Philadelphia. In response he issued his own advertisement in the South Carolina Gazette, setting forth his rights to the islands and warning potential purchasers that their title could be encumbered by his moiety title (Levy 1759a). Levy sought legal remedies to satisfy his claim to the islands through petitions and memorials to the Crown from 1759 through 1768. Levy apparently was never able to have his title recognized and claims settled by the British government. Although delayed because of Levy’s claims, titles to Sapelo and Ossabaw were conveyed on April 19, 1760 and the public auction was held (Levy 17??b).

The Isaac Levy affair contributes information significant to understanding settlement at Chocolate and elsewhere on Sapelo Island in years preceding the sale of the island at public auction. Grey Elliot, land speculator and member of the King’s Council, purchased Sapelo Island at auction for 725£ on May 17, 1760. Following this sale, Henry Yonge and William DeBrahm (Surveyors General of the Georgia Colony) completed a topographic survey for Elliot and drafted a map titled A Plan of the Islands of Sappola. This remarkably detailed and accurate map shows both natural and cultural landscape features, including the locations of buildings at several points across the island. The map lacks any description of the buildings, but their locations are at the sites of later historic settlements on the island, and some historians (e.g. Floyd 1937) suggest they may have been the remains of earlier Spanish settlements.
However, given statements by Isaac Levy about his improvements (specifically settlement and cultivation) on Sapelo and Ossabaw Islands, it seems likely that some and perhaps many of the mapped structures are products of Levy’s four-year effort to produce rents and profits from his venture with Musgrove and Bosomworth. Three house symbols are shown at Chocolate on the Yonge and DeBrahm map (Figure 3) and a fourth to the south, near the southern end of what would later be called Long Row Field. These structures appear in an area that roughly corresponds to Chocolate, as determined by overlaying a modern map of the island at the same scale and orientation as the 1760 version. Just south of the three buildings an ambiguous fifth cultural feature occurs that appears to be a bounded rectangular area (roughly 60 x 20 ft) that could represent a garden or livestock pen (this feature is omitted from Sullivan’s [1997:51] redrawn copy of the Yong map). A small symbol at the western corner of this rectangular feature could mark the location of the artesian well shown on later maps of Chocolate, although this location is considerably south of the well shown on the modern overlay. The notation of “Oak Land” denotes the dominant natural landscape.

Figure 3. Section from 1760 Yonge and DeBrahm Map showing Chocolate (Georgia Department of Archives and History).

The presence of cartographic structures in the Chocolate vicinity at least presents the possibility that the images drawn by Yonge and DeBrahm actually had one-to-one ground correlates in 1760. Suffice it to say that this map suggests that material remains dating to the second half of the 18th century may occur in the site’s archaeological record, as would architectural evidence associated with the early structures. Discovering both types of evidence were goals of the 2006 survey.

Patrick Mackay purchased Sapelo Island in 1762 and developed a plantation on the northern end of Sapelo. His intensive operations, concentrated in the High Point area but probably extending at least as far south as Chocolate, over some 14 years appear to have focused on importing and raising cattle and other livestock, supplemented with growing corn and perhaps cotton. While Mackay would have taken advantage of existing structures and other improvements on the island, it is expected that he also built a residence, slave quarters, and support
structures at High Point and elsewhere on the North End. He also probably had a wharf constructed, or at least improved an existing dock, at High Point. That was an ideal location (just inside of Sapelo Sound at the mouth of the Mud River) to receive supplies and ship his products. The relatively deep water found close to shore at High Point was to provide primary access to Sapelo Island for many years.

Patrick Mackay died in 1776, but work on his plantation may have continued for several years under the management of brothers Lachlon and William McIntosh. John McQueen then purchased the property, presumably including the slaves, from Mackay’s estate in 1784. McQueen was a South Carolina investor and land speculator who also was a joint owner of Cumberland Island and had other Georgia coastal properties, including Jekyll Island. He then sold his Sapelo holdings, including Blackbeard Island, in 1789 to Francois-Maria Loys Dumoussay de la Vauve to help offset his mounting debts.

Dumoussay, with the help of his compatriot Julien-Joseph Hyacinthe de Chappedelaine, organized the Societe de Sapelo in 1790. The Frenchmen’s Sapelo Company – composed of Dumoussay, Chappedelaine, Picot de Boisfeillet, Poulain Dubignon, and Grandclos Mesle – owned Sapelo and Blackbeard Islands, along with slaves, livestock, houses, furniture, and a boat, as undivided property. All except Grandclos Mesle resided on Sapelo for periods of time and developed their interests. Grandclos Mesle later shared his part in the Company with a fellow Breton, Nicolas-Francois Magnon de la Villehuchet, who lived briefly on Sapelo during 1791 and 1792.

Aside from the community residence at High Point, a house which may have been originally built by Patrick Mackay, some of the partners built or planned to build private residences elsewhere on Sapelo – at or near Bourbon Field, Hanging Bull, and on the northeast side of the island – and also on Blackbeard Island. None of the resident Frenchmen, however, were reported to have lived at Chocolate during the short life of the Sapelo Company.

With the demise of the Sapelo Company in the fall of 1793, the partners divided their property, including the 15 jointly owned slaves. Grandclos Mesle and Villehuchet jointly received a 2,000-acre tract that included Chocolate. Lewis Harrington, a brother-in-law of Grandclos Mesle who came to Sapelo to represent his interests, purchased Villehuchet’s share of the property and actively farmed the Chocolate tract for several years with the labor of 68 slaves.

Harrington sold his Chocolate holdings, as combined with the interests of Grandclos Mesle, in 1801 to co-owners Richard Leake and Edward Swarbreck. Thomas Spalding of St. Simons Island then purchased 4,000 acres of land that Harrington had acquired on the south end of Sapelo Island, evidently defined by Chappedelaine’s South End tract combined with DuBignon’s original share. Upon the death of his father-in-law, Richard Leake, in 1802 Spalding also became co-owner with Swarbreck of the Chocolate tract.

The next phase in the history of the Chocolate tract is less than clear. Spalding and Swarbreck seem to have leased the tract, or a portion thereof, to Francis Hopkins in 1805. Hopkins lived there with his family (his mother, wife, and five children) until 1808, when he purchased the Belleville Plantation from Spalding and moved to the mainland. It simply is unknown if any improvements were made to the property by Swarbreck and Spalding during the short time prior to Hopkin’s arrival. It is possible, perhaps even likely, that Hopkins resided on and operated the plantation developed there earlier by Harrington.

Edward Swarbreck, a sea merchant with Caribbean connections who traded in cotton and other commodities, including slaves, appears to have devoted serious attention to Chocolate only after Hopkin’s departure. He had tabby slave quarters, and probably the plantation residence and
other support structures, built between 1815 and 1819, replacing some of the earlier frame buildings on the plantation. Evidence of at least nine slave quarters, typically tabby duplexes with central chimneys and finished tabby floors, each side measuring about 14 feet by 20 feet, survives today as ruins and archaeological features at Chocolate (Figure 4). These indicate that the resident slave community consisted of at least 18 households and may have totaled between 70 and 100 individuals.

Besides presumably raising cotton, there is direct evidence that Swarbreck (or at least his slaves) grew sugar cane and had it processed into molasses and sugar at Thomas Spalding’s sugar mill located on the southern end of Sapelo. In a 12 January 1815 letter to Charles Harris, reproduced here in Appendix A, Swarbreck discusses the virtues of Thomas Spalding’s sugar mill, and the considerable value ($17,600) of the quantity of sugar and molasses that Swarbreck saw in Spalding’s “Curing House.” Swarbreck also mentions that he was sending an example of his own finished product: “Agreeable to your wish, I Present you with a small sample of sugar & molassiss that I brought from sapelo Island, manufactur’d by Mr. Spalding from my own Sugar cane which place I left the 7th Inst.”

Figure 4. Archaeological Base Map of Chocolate.

Tabby construction at Chocolate during Swarbreck’s tenure was an enormous undertaking, unparalleled at any other place on Sapelo Island. Preparation of the tabby mixture - consisting of equal parts of shell, lime from burned shell, and sand – involved collecting salt-free oyster shell from shell midden deposits found at nearby Native American archaeological sites
(such as at the Shell Ring and at Long Row Field), transporting it to the construction site, burning a portion of the shell for lime, and preparing the mixture with sand and water to be poured into wall forms to cure. Roughly 1050 cubic meters (~37,000 cubic feet) of shell was brought into Chocolate to construct Swarbreck’s tabby buildings. This volume equals the oyster shell that would be represented in about 350 Native American shell middens, each measuring 3 meters in diameter and 50 centimeters in height.

A rare discussion of the slave housing at Chocolate is presented in an 1821 publication by John L. Hopkins (the oldest son of Francis Hopkins) that directly quotes Edward Swarbreck (Hopkins 1821:156). “[T]he walls are of tabby, which in a little while becomes like stone, requiring no repair: this causes a considerable saving to the negroes, for it is generally expected that they will make the repairs as they become requisite, unless they are so to much extent, and then the plantation mechanics are employed: these always build the negro houses.” When asked his motive for building the quarters of tabby, Swarbreck replied “It makes my negroes more comfortable, and I desire to leave my estate as valuable as possible to those who may inherit it.”

Figure 5. Plantation House (Structure E), 1999.

Other tabby remains at Chocolate, which also appear to date to Swarbreck’s time, are a large (80 feet by 170 feet) two-story plantation house (Figure 5 and Figure 6) and several outbuildings. (A comparison of these manor house photographs, taken seven years apart at roughly the same angle, reveals how severely this structure has disintegrated in a short period of time.) One large (96 feet by 110 feet) tabby structure, distinguished by slotted walls that possibly provided ventilation, may have been a cotton barn with a central drive-through for unloading wagons of cotton from the fields and loading processed bales to transport for sale.
(Figure 7). It should be noted, however, that this slotted wall configuration is unique to plantation structures on the southeastern coast. In addition, Cornelia Bailey of Sapelo reports

Figure 6. Plantation House (Structure E), 2006.

Figure 7. Structures A1 & A2, Facing Southeast. A palm tree stump is present in the drive-through. Notice the slatted walls on A1 on the right.
seeing cedar boards fragments in some of the slats when she visited Chocolate as a child.

Two large agricultural fields, each capable of producing more than 12,000 pounds of Sea Island cotton annually, stretched north and south from the centrally located plantation structures. These fields continued to be used after Swarbreck’s tenure at Chocolate, probably were in use before he arrived, and are shown on an 1857 map of Sapelo Island (DuVal 1857). The southern field, identified today by the place name Long Row Field, extended from the plantation to the natural drain named Draw Bark – a distance of almost a mile and covering an area of about 80 acres. The matching northern field, without a surviving place name, extended from the plantation to just beyond Old Fort (the Sapelo Shell Ring)—a distance of slightly more than a mile and again defining an area of about 80 acres.

Long Row Field also was the locale of earlier Native American Indian activity. No recent investigation has been undertaken to determine the exact location and archaeological remains of this site. However, a small burial mound at that named place was partially excavated in April 1898 by Clarence B. Moore as part of his exploration of aboriginal mounds on Sapelo Island and elsewhere along the Georgia coast. Moore never published his work at Long Row Field, but basic information is included in his archived field journal (Moore 1898:64-68). Amos Sawyer then owned the property, described by Moore as having been plowed. The earthen mound was 34 feet in diameter, about 2.5 feet high, and yielded the skeletal remains of 11 individuals. This burial mound almost certainly was in close proximity to an associated village, and this may well have been the Guale town of Chucalate. The record of Moore’s excavation furnishes support for a suggestion made by Lewis Larson (1991:7), based on his reading of Spanish records, that the name Chocolate might have been derived from this Guale name.

Ownership of Chocolate changed around 1827, when Edward Swarbreck sold the property to Dr. Charles W. Rogers. This Northerner continued operations at Chocolate, constructed a tabby barn there, and purchased other property on Sapelo’s North End. Little is known concerning the details of Rogers’ activities. However, construction of the large (40 feet by 46 feet) tabby barn (Figure 8) containing stalls and a generous two-level loft indicates that

![Figure 8. Restored Barn at Chocolate, 1999.](image)
livestock and hay became more important on the plantation. The McIntosh County Tax Digest shows that Rogers owned 93 slaves in 1837.

Thomas Spalding purchased Rogers’ holdings, totaling 7,000 acres on the North End, in 1843. He then gave a large parcel (including Chocolate, High Point, and Bourbon) to his son Randolph as a wedding gift. Randolph and his family resided at Chocolate until the plantation house burned in 1853, when they moved into his father’s house on the South End. Plantation operations at Chocolate and elsewhere on the North End presumably continued under his direction until at least 1857, when Randolph moved to the mainland.

A *Topographical Reconnaissance of Sapelo Island, Georgia* was completed in 1857 by H. S. DuVal of the U.S. Coastal Survey that provides detailed information about the island landscape and cultural features. The map shows that the familiar, orderly layout of structures at Chocolate existed at that time (Figure 9), with two parallel lines of slave quarters opposing each other across an open area. The plantation house was situated at the western end of the open area, facing the marsh and Mud River, and the barn to the north of the house. The entire compound appears to have been fenced and large agricultural fields (previously discussed) extended to the north and south.

![Figure 9. Chocolate Section of 1857 DuVal Map.](image)

A section of a US Coastal Survey chart of Sapelo Sound dated 1859 and illustrated in Figure 10 shows the same general layout of fields and plantation structures, although in less coherent form. What is most interesting about this particular image is the series of dots south of the shell ring ("Old Fort") that might possibly represent slave cabins. The DuVal map also
contains some ambiguous symbols on the western edge of the field north of Chocolate, as does a later 1874 Coast and Geodetic Survey map. Chocolate in its heyday surely required more slaves and slave housing than can be accounted for by the extant tabby remains at the site, and if these symbols are indeed cabins, they are likely constructed of wood—tabby structures would be expected to appear on subsequent maps discussed below. These symbols show up elsewhere in wooded areas, and they could simply be part of the woods shading graphic. A basic archaeological survey in the north field above Chocolate should resolve this question.

The Sapelo plantations and the slave communities were disrupted in 1861 with the Civil War. Catherine and Michael Kenan, the only plantation owners still residing full time on Sapelo, fled to Baldwin County. Most or all the Kenan slaves (from Hanging Bull) were taken more than 150 miles inland to the rented plantation. It is unclear if all the other slave groups were evacuated to the interior as well. Some of those associated with Randolph Spalding (from Chocolate, Behavior, and South End communities) may have remained on the island or at a nearby location. At least a few of the slaves who stayed behind joined with the Union forces. Island residences were looted and vandalized during this period.

The close of the Civil War brought dramatic changes and instability to Sapelo Island. Not only was the slavery foundation of the plantation system abolished, but new management of the island and its residents was installed. Signed early in 1865, William Sherman’s Special Field Order No. 15 set aside Sapelo and other coastal lands for settlement by freed Blacks. This order promised an opportunity for Freedmen to claim a homestead of up to 40 acres so they could build new and independent lives.

The newly established Freedman’s Bureau recruited homesteaders from Beaufort, Hilton Head, and Savannah to settle the coastal islands. In less than six months, there were some 900
Freedmen living on Sapelo, including 548 previous residents who had returned to their island home or had never left. When reconstruction politics shifted power to former landowners and also to Northern entrepreneurs, lands were returned to their pre-war owners and most, if not all, the Freedmen who had been recruited to Sapelo were forced to leave.

The North End tract changed ownership several times after Whites regained control. John Griswold purchased the north end of Sapelo, including High Point and Chocolate, from the estate of Randolph Spalding in 1866. Although Griswold built a house at High Point and briefly resided on Sapelo, his dreams of creating a cotton empire were fruitless. It is likely that during this period several of the tabby slave cabins at Chocolate were dismantled, their poured wall courses sawn into blocks and used in other construction. Some were probably used as the foundation piers for Griswold’s frame house at High Point. Other blocks may have been used to construct an internal wall in the eastern side of Structure A1 at Chocolate.

Griswold sold his property in 1873 to James Cassin of New York. Cassin lost the tract in 1879 through foreclosure to Henry Townsend, also of New York, who then sold the land in 1881 to Amos Sawyer of Massachusetts. Sawyer was largely an absentee owner, but spent winters at Chocolate with his family.

The resident Geechee during the post-war years, comprising 64 households with a total of 311 people according the 1870 Federal Census, were economically tied to the White community. These families worked as tenant farmers, sharecroppers, carpenters, laborers, and domestic servants in exchange for cash and goods. During the Reconstruction years, Sapelo’s Geechee population resided in their former slave communities as well as on tenant farmsteads elsewhere on the island. Most likely one or more families had homesteads or lived at Chocolate as tenant farmers during this period. It is probably the Jacob Green family who provided shelter and food for a White visitor named Nathanial Bishop at Chocolate in 1875. Bishop had undertaken a voyage southward along the eastern seaboard in a paper(!) canoe. He wrote a detailed account of his experiences, including encounters that he had with the “locals.” An excerpt of his account, presented in Appendix B, indicates that a family of Blacks was living at Chocolate adjacent to the Mud River, apparently in one of the tabby structures near the shoreline. If this was the Green family, they were successfully growing sea island cotton, as indicated by this passage by Bishop:

“This negro could read, but he asked me to address a label he wished to attach to a bag of Sea-Island cotton of one hundred and sixty pounds' weight, which he had raised, and was to ship by the steamboat Lizzie Baker to a mercantile house in Savannah.”

In 1910, the Federal Census indicates that a single household was present at Chocolate. This household consisted of Jacob Green (62 at the time), his wife Elisa, a son and grandson, and an adopted son.

Life on Sapelo Island soon was to change dramatically. Howard E. Coffin, the wealthy Chief Engineer and Vice-President of the Hudson Motor Company of Detroit, visited Sapelo in 1911 and started planning for its purchase and development. Through negotiations with the Macon hunting club and complex transactions with the remaining owners, Coffin purchased most of the island in 1912 to serve as his retreat and a hunting preserve. For several years, he continued to acquire outlying parcels to consolidate his holdings. Coffin bought several lots at Raccoon Bluff in 1913 and 1914, purchased Little Sapelo Island in 1920, and owned more than a dozen small tracts at Shell Hammock by 1924.
Howard Coffin’s operations and development activities on Sapelo were very extensive. His ambitious projects included rebuilding Spalding’s South End House, constructing a ditch system to drain low-lying interior areas of the island, land clearing for pasturage and the importation of cattle, tapping artesian wells and drilling new wells, clearing additional agricultural fields, and constructing shell-surfaced roads. He had fields planted in Sea Island cotton and a large herd of ranging cattle on the island until the early 1920s, and later developed a dairy herd. In 1925, an elaborate greenhouse was constructed just east of the South End house and a large wetland was dammed on the northern end of the island to create a pond for ducks and other waterfowl. Other game birds were introduced, including pheasants, wild turkeys, and (from Guatemala) chachalacas. Major construction projects included building a marine railway on the South End, numerous barns and other farm structures, and restoration of the Roger’s barn at Chocolate as well as renovation of an old tabby slave house there (Structure B) for a hunting cabin. Coffin also developed or renovated operations at the sawmill and oyster factory at Kenan Field. Most of his building projects were completed by 1928.

During the Coffin era Jacob Green and his family continued to live at Chocolate, as a farmer and also probably as a caretaker and attendant to guests who used the hunting cabin. The Green residence at this time may have been a refurbished slave cabin (Structure H) near High Point Road. A soil survey map of McIntosh County, published in 1929 by the United States Department of Agriculture, shows not only soil types but features of the cultural landscape on Sapelo Island near the end of Coffin’s ownership of the island. The part that includes Chocolate (Figure 11) appears to show only standing or occupied structures – the hunting cabin and the barn. It omits the more numerous tabby ruins and also fails to show the refurbished cabin near High Point Road.

![Figure 11. Section of 1929 Soils Map Showing Chocolate.](image)

Howard Coffin’s plans for Sapelo largely had been realized by the late 1920s and following the stock-market crash of 1929 he focused his attention on development of the Sea
Island Company located on nearby St. Simons Island. The Cloister Hotel and associated facilities of Sea Island were becoming an exclusive retreat for wealthy Georgians and other tourists. However, besieged with declining assets and disappearing capital, Coffin quietly began to seek a buyer for Sapelo Island.

Throughout his ownership of Sapelo Island, and particularly as he was seeking to sell his property, Coffin had photographs taken of the island’s natural environment, various development activities, its tabby ruins, the Geechee residents, and distinguished visitors. Among these are visual records of Chocolate, including an aerial view showing structures and fields (Figure 12), a photograph of the Roger’s barn before its restoration (Figure 13), the ruins of tabby slave quarters (Figure 14), the Plantation House (Figure 15), and the landing along the Mud River (Figure 16); these photographs are to date prior to 1934 and are from the Vanishing Georgia Collection, Georgia Department of Archives and History.

Richard J. Reynolds, Jr., heir to his father’s tobacco empire, visited Sapelo Island in 1932 and purchased Coffin’s Sapelo property at a depression price in 1934. Reynolds continued many of Coffin’s activities on the island, including farming and livestock operations. He also undertook new projects, such as construction of a two-story dairy barn to replace an earlier small

Figure 12. Aerial photograph of Chocolate. View is to the north.
Figure 13. Barn at Chocolate, Prior to Restoration. Facing north.

Figure 14. Slave Quarters at Chocolate.
barn and expanded the dairy operations at the South End. On the northern end of the island, he created a wetlands impoundment known as the Duck Pond for wildlife. As with Coffin, many of the island’s Geechee residents provided the labor for Reynolds’ enterprises. Also like Coffin, Reynolds wanted to consolidate and expand his Sapelo property and sought to purchase outlying tracts owned by Geechee families. He bought some lots and encouraged or pressured the exchange of others for property in Hog Hammock. Most had relocated during the 1950s and by 1964 all the Geechee residents of Sapelo Island had been joined, many against their desires, in the single community of Hog Hammock (an area of 434 acres).

A most detailed map of the island was produced for Reynolds during the early years of his tenure. This map by R. N. White, Jr. (1940) is a composite of topographic information from U. S. Coast and Geodetic Survey maps, and aerial photographs from 1933 (apparently provided by Coffin), and White’s own field survey. The map shows houses and other standing structures as well as many other important features of the cultural landscape. These include “negro village survey line[s],” lot lines, fences, bridges, docks, artesian wells and rams, roads, ditches, power
lines, telephone lines, cultivated fields, abandoned fields, and pastures. The natural landscape is marked by types of pine forest, stands of hardwood, cypress, gum-bay swamps, savannas, palmetto thickets, high and low marshes, beaches, creeks, and ponds. That portion of the White map covering Chocolate (Figure 17) shows two structures and an artesian well (the Bench Mark on the 1974 Archaeological Base Map) at the end of a drive leading from High Point Road. The structure just west of the artesian well would have been Roger’s tabby barn. The dwelling north of the artesian well appears to be the two-story frame house that stands today in that location. This structure is a Sears Home, transported in parts and assembled on-site sometime after 1929 (when it is absent on the Soil Survey map) and 1940 (sales by Sears also ended in 1940). This map also may indicate the location of the Green residence in Structure H adjacent to High Point Road.

Unfortunately, except for the possible exception of the refurbished slave cabin occupied by the Greens, the White map fails to record locations of the tabby ruins at Chocolate. It does, however, show the old plantation was surrounded by a fence, the location of what was perhaps a stock pen, that there was a large ditch along the outside of the northern fence line, that abandoned fields extended to the northeast and southwest, and that slash pine/loblolly pine/oak forest and an open savanna was located on the other side of High Point Road.

Chocolate appears to have been maintained during Reynolds’ ownership of the island and also probably saw use as a hunting camp for his guests. The 1954 U.S.G.S. topographic maps of the area (Figure 18) show an open field around Chocolate and extending to the southwest (indicating that Long Row Field remained cleared and possibly was under cultivation), the artesian well, some of the tabby ruins, the barn, and the Sears Home. Two dwellings, not shown on the 1940 map and not standing today, were located along the northern edge of the open field. According to Cornelia Bailey, these were small frame structures occupied by Geechee who were employed by Reynolds as caretakers.
After Richard Reynolds’ death in 1964, the University of Georgia Marine Institute continued its operations from the South End laboratory and dormitory complex and his widow, Annemarie, sold most of the North End to the State of Georgia in 1969 as a wildlife refuge to be administered by the Georgia Department of Natural Resources. Subsequently, in 1976, the State of Georgia acquired the South End (excluding Hog Hammock) and also entered into a long-term lease arrangement with the Marine Institute so that its research operations could continue. At the same time, the South End and the area along the Duplin River was designated a National Estuarine Sanctuary.

Today Chocolate is recognized as one of the several important archaeological sites within the wildlife management area on Sapelo Island. The information it contains reflects not only an exceptionally rich recorded historical heritage, but also the undocumented lives and culture of the many different people who called the place known as Chocolate their home.

Previous Research

Prior to the UTC investigations, Chocolate was the focus of two university-based research initiatives, first by West Georgia College (now the University of West Georgia) and more recently by the University of Mississippi. The results of these efforts are summarized below.

West Georgia College

Initial investigations at Chocolate were part of a broad program of archaeological survey between 1974 and 1980 on Sapelo Island under the direction of Lewis Larson, the State Archaeologist of Georgia at that time and also Professor of Anthropology at West Georgia College. The goals of this survey program (undertaken as six-week summer archaeological field
schools) were to identify, record, and evaluate archaeological resources to develop a model that could be used by the Georgia Department of Natural Resources in the creation of an archaeological component for the State Historic Preservation Plan and for its management of cultural resources within the coastal region. Secondarily, but as important, the survey provided immediate information to the Game and Fish Division of the Georgia DNR so that its management activities on Sapelo Island could be planned so as to have a minimal effect on archaeological resources (Larson 1980).

Figure 19. Lewis Larson (left) and Ray Crook (right) at Structure A1, 1974.

Very basic information was gathered about Chocolate during parts of three field seasons. Fieldwork focused on mapping, architectural recording, and limited test excavation. A permanent grid system and bench mark was established for the site, then a detailed topographic map showing surface contours, the locations of tabby ruins and standing structures, and other landscape features was produced during the 1974 field season by Ray Crook, Larson’s field assistant; the base map used in this report (Figures 4 and 22) is a product of this effort. At that time Crook also began plan drawings of several tabby ruins (Structures A2, B, C, E, and F), and measured elevations of Structure A1 (Figure 19). The architectural projects were completed in 1975. The excavation of several 5-foot squares and a 5-foot wide trench was initiated in 1975 and concluded during the 1976 field season to sample the distribution of cultural materials and detect subsurface features at the site (Figure 20; see also Figure 22 for the UWG unit locations). The shallow floor in one room of a tabby foundation ruin (Structure I) also was cleared in 1975, exposing a poured tabby floor in the southeastern side of the slave cabin.
Maps, architectural drawings, excavation plans and profiles, field photographs, and recovered artifacts are curated at the Waring Archaeological Laboratory at the University of West Georgia. The historic artifacts have recently been analyzed by Honerkamp and Kroulek and are listed in Appendix C and are listed in Appendix C. Of interest to us is what does not appear in this inventory: ceramics that are temporally diagnostic for the colonial period, with beginning manufacturing dates prior to the introduction of creamware (1762), are conspicuously absent. Thus, evidence of a “Levy-era” occupation is lacking in this sample. Perhaps the most intriguing artifact in this collection is a blonde French-style gunflint, found in the process of exposing the foundation of Structure I. Measuring 21 cm long and 26 mm wide, this small flint is a basic blade in form (Honerkamp and Harris 2005:102). Prismatic French gunflints began to be produced in earnest during the mid 18th century and were commonly used in the United States by 1800 (Blanchette 1975; Hanson 1971; White 1975). Besides a possible early date, its association with a slave cabin may be significant and is discussed on p. 60.

Figure 20. Daniel Simpkins excavating a test pit outside Structure E, 1975.

University of Mississippi

In 2003 Chris Simmons conducted a geophysical survey of Chocolate as part of his master’s thesis research at the University of Mississippi, under the direction of Professor Jay Johnson. Besides the application of ground penetrating radar (GPR), electrical conductivity, electrical resistance and gradiometry, Simmons also excavated 10 test units measuring 1 X 1 m each (Simmons 2004); their locations are indicated in Figure 22 of this report. The areas covered by each of the geophysical methods were overlapping rather than identical, so it was not possible to directly compare the utility of each approach at the site. Simmons apparently did not georeference his grid, instead relying on Crook’s map (Figure 4) to overlay geophysical images. He also switched to a metric grid from Crook’s English measurements, although he retained Crook’s 1000N 1000E grid point as a datum.

Simmons defined three main goals for his study: the delineation of the “entire” site’s structure through a geophysical survey approach, the determination of site function and use from
test excavations, and analysis of artifacts to define construction and occupational phases. The
methodological framework of his artifact analysis followed the pattern recognition approach of
Stanley South (1977).
Rather than actually examining the entire site, Simmons limited most of his geophysical
surveys to the southwest half of the open area at Chocolate. Perhaps his most intriguing result
was to detect the presence of a previously unknown (and presumably earlier) road into the site
from High Point Road. As shown in Figure 21, it roughly parallels the current existing road that
leads directly to the restored Rogers Barn. The current road, lined with pecan trees, is evident in
the Coffin-era aerial photo of Chocolate (Figure 12). Projecting its route, the parallel buried road
would lead to a point south of the Rogers barn, and just north of the Coffin hunting cabin
(Structure B). A suspicious disruption to the contour lines near the Mud River and west of the
big barn (see Figure 4) would also seem to line up with the presumed buried road (it was not
ground truthed), and probably signals the approach to a dock on the Mud River that was located
in front of the plantation house. At any rate, the buried road likely predates construction of the
Rogers barn. Creation of the current road, with its clear orientation on the big barn, is more likely
associated with Rogers (or later) than with Swarbreck, as suggested by Simmons (2004:66).
Simmons also reports geophysical sampling on the western row of slave cabins in 2004 that
resulted in the location of unspecified “subsurface components” as well as “an isolated wall that
appears to have no associated structures” between Structures K and J (2004:26). Inexplicably, no
imagery or discussion of these discoveries is presented.

Figure 21. Resistance Imagery Showing Early Road into Chocolate. From Simmons 2004, Figure 8.

At the Structure I slave cabin, which was mapped and excavated by West Georgia
College in 1975, Simmons detected the western half of the structure using GPR and resistivity. A
1 X 1 m test pit in the structure interior (including removal of a poured tabby floor found in the
pit) confirmed the remote sensing images of foundations. Based on GPR and conductivity data,
Simmons also ground-truthed an image in the vicinity of Structure S, which Crook had designated as a chimney fall from a slave cabin. Structural features were uncovered, including a cabin floor, wall demolition, and a high concentration of charcoal. Unfortunately, it is unclear from the description, photograph and field sketch if the charcoal deposits are intrusive or occur below the tabby floor (Simmons 2004:44-47). In any case, Simmons considers the combination of charcoal and possible “cooking utensil” fragments as constituting an open “cooking area” that post-dates the cabin. Of course, the charcoal might also be a result a fire consuming the roof and interior of the cabin, and the artifact assemblage is not particularly distinct from the other slave cabin samples.

A test pit in the north end of the Structure A drive-through was less informative, resulting (not surprisingly) only in the recovery of nails. Simmons somehow concludes that Structures A1 and A2 constitute a commissary/infirmary that he attributes to Swarbreck, although he produces no evidence, archaeological or documentary, in support of such an odd assertion. The size and elaborate layout of this structure, with its central drive-through, argues strongly against this interpretation. Compounding this apparent error, Simmons then proposes that construction of the “commissary/infirmary” necessitated construction of the later (current) road into the plantation and the abandonment of the initial road (2004:78).

Simmons also concludes, based on the presence of late artifacts (such as a plastic button) from an interior test pit, that Structure H was occupied in the postbellum period. This is consistent with oral history information presented above.

Much of Simmons’ thesis is devoted to a pattern recognition analysis of artifacts from his 10 test pits, several of which were located outside the remote sensing grids. In retrospect, the samples that were derived from these seemingly random test pits are too small and disparate to make reliable statements concerning meaningful temporal parameters and patterns of site function.

Methodology

An overall objective of the present study was to carry out a comprehensive, systematic archaeological survey in order to provide information on the nature and extent of cultural resources at Chocolate Plantation. Besides presenting the sponsor with an objective, ground-truthed record of prehistoric and historic artifact spatial positions and densities that would aid in the future stewardship of the site, the survey results provide a guide for future archaeological research. Furthermore, through Geographic Information Systems (GIS) modeling, artifact pattern recognition and quantitative analysis, this study tests some of the research questions and hypotheses generated by the results of past fieldwork.

The survey was initiated in the spring of 2006 through a permit application by the Department of Sociology, Anthropology and Geography, University of Tennessee at Chattanooga (UTC) to the Preservation Division, Georgia Division of Natural Resources (DNR). Field work occurred from May 10 through June 6 with a crew of eight UTC students under the direction of the senior author. Laboratory analysis occurred at the UTC Institute of Archaeology facilities from June 8 through June 21, and report preparation continued through the month of July by the authors. A UTC Faculty Research grant provided funds for student travel costs, support for a field supervisor, and some field expenses, while DNR provided crew housing and utilities and a barge transport of the Field Director’s truck to and from Sapelo Island.
The survey grid at Chocolate was created with a total station that was tied into a datum point used during previous studies. Crook’s 1974 map (Juengst 1980:5), which was the cartographic basis of the remote sensing study of Chocolate by Simmons (2004), provided a convenient and detailed base map. While some details about the site had changed in the intervening 32 years, this map proved to be extremely accurate. As shown in Figure 22, 117 half

Figure 22. Chocolate Plantation Survey Base Map. Survey Units are in red; Crook’s excavations are in black; Simmons’ 10 test pit locations (1 x 1 m) are indicated with a blue “X”. The grid is oriented to magnetic north.
meter excavation units were placed every twenty meters on a magnetic north-oriented grid to facilitate an even distribution of archaeological spatial data. This grid was tied to the 1000N/1000E datum established by Crook and used by Simmons. It should be noted that the original 1974 map was scaled in feet, while the Simmons and UTC grids were in meters. However, the 1000N 1000E datum was designated as the same point in all three studies.

Structure designations originally proposed by Crook have been retained on our base map. With one exception, each of the 50 cm units were excavated to sterile and screened with ¼” hardware cloth. Stratigraphy was recorded in all the units, and all measurements were noted in centimeters below surface. As stipulated in the DNR permit application, no units were located within tabby structures, and none of the half meter pits were expanded to accommodate the excavation of the 14 features that were encountered. Strict adherence to this procedure proved to be extremely frustrating, but it did ratchet up the authors’ enthusiasm for returning to Chocolate in the future.

The single exception to the field methodology outlined above occurred in the survey unit located at 860N 1020E (FS 29). A large fragment of structural tabby was encountered within 5 cm of the surface, and excavation immediately ceased, as it was apparent that this unit was probably within the poorly-defined footprint of the Structure S slave cabin. Thus, the artifact density maps illustrated in this report exclude this unit.

All artifacts were rough sorted and tallied (Figure 23) as part of an aggressive field laboratory that facilitated construction of preliminary artifact distribution maps on a daily basis. It was possible to get a sense of the utility of this approach after only a few days of fieldwork. This fast turnaround also allowed us to carry out a series of “reality checks” on our map grid by comparison against the field grid, and thus we were able to minimize if not eliminate ambiguities.

Figure 23. Shell Sorting and Quantification.
and mistakes. Due to the large volume of shell found at the site, and the uncertain use of this material as a food by product and/or raw material for tabby production, shell was quantified in milliliters; a trace of shell (less than 50 ml) was recorded as 50 ml. Whole shells were also quantified by count and then included into the total shell liter quantities. Conch shells were also counted. Once this had been accomplished, the aggregate shell was bagged and placed in the main barn for future use by DNR in tabby repair. Plaster tabby and charcoal were quantified by weight in the UTC Institute of Archaeology laboratory. Due to the fragile nature of some of the aboriginal pottery types, these artifacts were both counted and weighed, with weights being used for the distribution maps presented below. The same approach was also used for faunal remains.

Once artifact analysis was completed at UTC, the data were organized using Microsoft Access to create a database from which queries specifying particular combinations of artifact classes and types could be constructed. The Access database recorded field specimen (FS) numbers, the provenience of each bag, and codified and quantified description of artifacts in each FS bag. Mastering the arcane nature of Access allowed for efficient manipulation of the data.

Data were organized by excavation unit and associated FS numbers (see Appendix D). Totals of artifact classes or types were then generated by excavation unit. Once the Access data was cross checked for accuracy, it was possible to delimit it to particular artifact groups in order to explore distribution patterns on both local and site-wide scales using the queries. The data were then imported into ESRI ArcCatalog and ArcMap 9.1 for georeferencing and statistically-based spatial analysis.

Waypoints were taken with a Garmin III+ GPS from various known points using the “Average Location” function. Each waypoint was allowed to calculate for 1-2 hours until an accuracy estimate of < 10 feet was recorded. These waypoints were imported into ArcMap using the GPSi toolbar and were saved to the model as a mapping reference layer. However, due to inherent range of variability in the waypoints using this hardware, the GPS data was not particularly helpful. Aerial photographs of the plantation provided by DNR were also of limited utility within this methodological framework due to a variety of factors, including small scales and consequent excessive pixilation, high-angle views, and the presence of shadows that obscured wall corners.

Next, Crook’s 1974 site composite excavation map was updated in Golden Software’s Surfer 8 mapping program and edited using Adobe Photoshop 6.0. The 20-m grid, our excavation unit locations, and the present tree line and modern building locations were added or adjusted. The base map was added to the ArcMap model and georeferenced using the 1000N 1000E datum highlighted on the original map. The center of each unit was then marked by a point feature using the Editor toolbar. Each point was labeled with the appropriate unit designation within the shapefile Attributes table in order to facilitate the joining of database query results to the spatial features. The result served as the base model for distributional analysis.

More than forty MS Access data queries were created to explore spatial variation between survey unit models, as well as variation between spatial distributions of artifact classes, wares, and types (South 1977). The focus of this study was on the spatial distribution of aboriginal ceramics, historic ceramics, container glass fragments, cut (i.e. square–sectioned) and wire (round-sectioned) nails, whole and crushed shell, structural materials such as tabby plaster and brick, faunal remains, and modern artifacts. This list account for more than 90% of the total artifact assemblage and some of these artifacts serve as useful chronological indicators. In this
regard, the samples generated by this survey are considered to be roughly representative of the site’s total artifact population in a spatial, quantitative, and qualitative sense. Of course, the validity of this assumption awaits secondary testing.

Each queried dataset was individually added to the ArcMap model, and the data was joined to unit shapefile points by way of field specimen bag number. Then the ArcMap Spatial Analyst toolbar was used to create an “inverse distance weighted interpolated raster layer” (IDW) which employs nearest neighbor statistical analysis to cover the geographic extent of excavations. Default values for Spatial Analyst were used, as they are ideal for these kinds of analyses. The frequencies (or in some cases, weights or volumes) within the data allowed for clear definition of spatial patterns and densities using a multiple gradient color ramp from green (low) to red (high). Based on the range of variation within each data set, statistical ranges were manually defined for each map in order to create distribution images that were both representative and meaningful. Special attention was given to indicate areas of negative results. This method produced a site-wide graphic probability model of spatial artifact distribution densities based on the frequencies generated from each query.

After the maps were generated and their formats standardized, each model was exported into a JPEG graphic file for viewing and comparison. All models within this report feature Crook’s map as the base with an overlay of the GIS shapefile and spatial analysis. Survey unit data points on the distribution maps to follow are marked by small blue squares (not to scale).

Survey Results

The 117 survey pits excavated during this project produced abundant artifacts and features. When displayed as GIS artifact contour maps, the artifact frequencies, densities or volumes allow us to generate and test several hypotheses concerning site structure and function. These distribution models are of course contingent on the limitations inherent in the survey methodology, with small sample bias being the most obvious potential skewing factor. On the other hand, there is something to be said for a broad-scale approach consistently applied to areas of the site that do not contain obvious tabby remains—an approach that has not been followed in many of the previous efforts at this site. Sampling theories notwithstanding, however, what is striking about the results to date is the highly productive nature of the archaeological resources sampled at Chocolate. Given the miniscule sample size that this project ultimately generated (29.25 m² from about 36,800 m², or just 0.08% of surface area, excluding trees and building footprints/interiors), 9MC96 appears to posses an impressively rich archaeological potential. This is equally true in both slave cabin and big house locations.

Stratigraphy

Except when features or midden deposits were encountered, soil profiles at this site were fairly uniform. A typical stratigraphic record exhibited a top zone of dark gray to gray brown (Munsell hue and chroma = 10YR 3/1) extending an average depth of 29 cm below surface. Below this was a lighter sandy loam designated as Zone 2 (2.5Y 6/4). Based on color differences, Zone 2 was usually divided into two levels: level A was interpreted as a transitional leeching zone of dark grey sandy loam with tan mottling that was usually 5-10 cm thick; level B below it always appeared as a tan sandy sterile stratum. The transition from A to B was gradual. Zone 2B was uniformly devoid of historic artifacts, but in a few units prehistoric artifacts were
recovered near the top of this sandy, usually (but not entirely) sterile subsoil (Simmons [2004:3] reports encountering fiber tempered pottery between 60 and 70 cm below surface, and this is the case at both Bourbon Field and Kennan Field). Screened excavation was extended to 94 cm below surface due to the presence of Feature 1 in 1000N 920E, and in 900N 920 E the unit was taken down to 111 cm below surface to more fully reveal the bottom of Feature 14. The average total depth of the survey units was 54 cm. Two units produced notably heavy concentrations of shell and artifacts that appear to represent a midden deposits: 800N 1060E, near Structure H, and 960N 960E, located between the big house and the access road.

Features
A total of 14 cultural and natural features were identified during the survey; they are listed and summarized in Table 1. Due to the small size of the survey units, features often were defined only after they had been inadvertently excavated as part of the survey unit fill. Hence, it is probably more accurate to say that in many cases the bottom portions of 14 features were identified. Another difficulty directly related to the small size of the survey pits involved severe depth-of-field issues when photographing features in both plan views and profiles. As a consequence, definitive interpretations of feature functions are conspicuously absent in some of the summaries that follow. As noted in Table 1, Features 5 and 12 were found to be utility trenches for water and electricity, while Features 10, 11 and 13 were ultimately defined as manifestations of faunal disturbance, specifically, burrowing mammals or reptiles (Schiffer 1987). They will not be summarized.

Table 1. Feature List, 2006 Chocolate Plantation Survey.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Unit</th>
<th>Description</th>
<th>Opening/closing</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000N 920E</td>
<td>Historic posthole on north profile of survey unit</td>
<td>68-105 cm*</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>860N 1020E</td>
<td>Tabby fragment associated with Structure S</td>
<td>5 cm</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>980N 980E</td>
<td>Historic posthole adjacent to Structure A²</td>
<td>62-69 cm</td>
<td>40, 42</td>
</tr>
<tr>
<td>4</td>
<td>960N 1000E</td>
<td>Probable prehistoric pit, unknown function</td>
<td>26-64 cm</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>1040N 960E</td>
<td>Modern Ditch Witch © trench with lead pipe</td>
<td>19-29 cm</td>
<td>47, 48</td>
</tr>
<tr>
<td>6</td>
<td>960N 940E</td>
<td>Bottom of possible posthole of unknown origin</td>
<td>53-59 cm</td>
<td>50, 51</td>
</tr>
<tr>
<td>7</td>
<td>920N 960E</td>
<td>Possible root cellar and/or trash pit</td>
<td>83-88 cm</td>
<td>54</td>
</tr>
<tr>
<td>8</td>
<td>920N 980E</td>
<td>Edge of historic pit (possible trash pit)</td>
<td>49-62 cm</td>
<td>58, 60</td>
</tr>
<tr>
<td>9</td>
<td>820N 1060E</td>
<td>Possible foundation trench or trash pit associated with Structure H</td>
<td>30-61 cm</td>
<td>86, 87</td>
</tr>
<tr>
<td>10</td>
<td>820N 1060E</td>
<td>Probable rodent burrow beneath Feature 9</td>
<td>46-61 cm</td>
<td>87</td>
</tr>
</tbody>
</table>
Feature 1. An historic posthole was discovered on the north wall of 1000N 920E. This unit, located approximately 18 meters from the northwest corner of the restored barn (Structure R), is also adjacent to the Mud River. An “early,” that is, 18th century component may be represented by this rather indistinct feature (Figure 24) and the contents of the unit. Recovered artifacts include two coarse salt glazed stoneware sherds and one of lead glazed earthenware, along with 22 cut nails and a large oxidized spike near the bottom of the feature; 4 “later” wire nails (Adams 2002) were also associated with the unit fill. This test contained a large quantity of shell (2800 ml, including 26 whole oyster shells) and tabby plaster (370 g, which is in the top 10% of all the survey units). As mentioned above, the double potential of shell as a behavioral by-product of food collecting and/or tabby construction produces a certain amount of interpretive ambiguity. The plaster at least is a positive indicator of the presence of a structure in the near vicinity of this unit. None was noted in the profile of the Feature 1.
The unit fill also produced two sherds of aboriginal ceramics: a grit tempered complicated stamp (7 g) and a sand and grit tempered plain (1 g). Due to the small size of these fragments, it was not possible to confidently determine a specific prehistoric ceramic type designation for either. This was true for a significant number of sherds from this site. What the presence of any aboriginal pottery at Chocolate represents, however, is the possibility that features, as well as faunal remains and shell, may be attributed to native peoples. The overall distribution of these artifacts will be analyzed in the next section.

Feature 2. After excavating only 5 cm in 860N 1020E, a tabby fragment associated with Structure S was noted. This was present south of the remains of a tabby fireplace for a slave cabin that Crook had mapped and later Simmons confirmed using remote sensing and archaeological testing. In defense of the UTC researchers, we assumed that the fireplace was on the end of this cabin, but it clearly was placed in the center. No evidence of heavy charcoal deposits consistent with Simmons’ “outdoor cooking area” was noted, but that may be due to the shallow depth of the excavation: as soon as we realized we were probably within the footprint of a structure, digging was suspended. The tabby fragment is probably from a wall section and is shown in Figure 25. Its presence simply confirms what Crook and Simmons already demonstrated: a tabby slave cabin once stood here. Apparently the walls of Structure S were almost completely recycled after it was abandoned and/or burned down, leaving only the fireplace sections above-ground.

Figure 25. Feature 2 Tabby Fragment in 860N 1020E. Facing west.

Feature 3. In Survey Unit 980N 980E, located just west of the northwest corner of Structure A2, an historic posthole was identified. As shown in Figure 26, it is roughly rectangular in shape, measuring approximately 17 (north-south) x 12 cm, with grey, brown and
dark grey mottled sandy fill. This unit contained a heavy concentration of plaster tabby and shell, at 4025 grams and 20,000 liters, respectively. In fact, this was the largest quantity of plaster and the second largest for shell found in all the units. Two brick fragments are included in the

Figure 26. Feature 3 Rectangular Posthole, 980N 980E. Note shell and tabby fill in unit walls. Facing north, 62 cm BS.

demolition fill. Unfortunately, this feature was not recognized until 62 cm BS; the remaining 7 cm of feature fill contained a trace of shell and charcoal. Nine cut nails and two window glass fragments were recovered in this unit. But unlike the results from Simmons 1 x 1 test unit, this survey pit produced a small quantity of domestic artifacts, including a sherd of gray salt glazed stoneware and plain pearlware, fragments of clear container glass, and 4 bone fragments. This difference might be attributed to the presence of an earlier structure at the 980N 980E location—certainly the Feature 3 posthole and plaster tabby support this possibility—along with the placement of Simmons Unit 4 in an area that would be expected to produce few artifacts (the drive-through).

Aboriginal ceramics present in 980N 980E at least raise the possibility that the posthole is prehistoric. They consist of 2 sherds (3 g) of Irene Incised, including a rim; 1 Savannah Cord Marked sherd (3 g); 1 grit tempered plain sherd (4 g); and a “sherdlet,” so named for its diminutive size (< a gram in weight, recorded as 0.5) and corresponding lack of distinguishing characteristics—the mean weight for 140 sherdlets was less than .8 g, while the 177 more “robust” aboriginal sherds possessed a mean weight of 4.1 g. No other prehistoric-associated artifacts were noted in the unit, with the possible exception of the organic remains. However, the clearly rectangular shape of Feature 3, combined with the heavy historic artifact assemblage, implies that it originated in a historical context. While Crook (1978) has recorded rectangular, probably Mississippian postholes on Sapelo, they were not accompanied by historic artifacts.
Feature 4. Approximately 10 m southeast of Structure A, in 960N 1000E, a pit was defined that originated in the upper portion of Zone 2. It was located on the southeast corner of this unit (Figure 27). This rounded bottom feature, extending 30 cm on the north wall and 33 cm on the west wall at the level of definition, was interpreted as a probable circular pit of unknown function—no artifacts were definitely associated with the light/medium grey mottled fill.

![Feature 4, Possible Prehistoric Pit, 960N 1000E. The light gray fill above the feature is due to drying out of the profile wall. Facing southeast.](image)

However, 6 sherds (9 g) of aboriginal pottery and a trace of shell and charcoal were found in the survey unit. These included two fragments of fiber tempered, a sand tempered plain folded rim, and three sherdlets. The only historic artifact recovered in the entire unit was a single cut nail. The discovery of this feature in an area that essentially was devoid of historic artifacts but that contained prehistoric ceramics at least suggests, if not confirms, a prehistoric origin.

Feature 6. The bottom of a probable posthole was defined in 960N 940E at 53 cm BS (Figure 28). This unit is situated about 18 m north of the main house foundations (Structure E), which might be expected to form a “busy” area of the site in terms of features. Feature 6 is approximately 15 cm wide with straight sides on the south and west edges, a characteristic that is most likely attributed to the historic period. The bottom of the feature was generally rounded and uneven. The last 6 cm of the feature fill was excavated separately from the unit fill, but provided almost nothing in the way of meaningful artifacts: only a small amount of shell (< 50 ml) was recovered. The survey unit assemblage was another story. A single sherd each of plain delftware, whiteware, and an unidentified historic ware were found. The delftware sherd constitutes the only example of this ceramic type found at the site. Delftware is usually associated with an 18th century context on the Georgia coast, although Noel Hume does indicate that it can occur in limited amounts up to the early 19th century (1974:111). At any rate, this sherd is one of the few artifacts from Chocolate that could conceivably date to the Levy period. On the other hand—no
pun intended—this same survey unit produced a porcelain doll arm, of a style that Noel Hume dates to the last quarter of the 19th century (1974:318); it is illustrated in the next section (Figure 38).

Other artifacts from the unit included 2 green bottle glass fragments, 6 cut nails, 3 brick fragments, 111 g of plaster tabby, 1000 ml of shell (including 10 whole shells), 10 small (1.8 g) fragments of bone, and a small amount of charcoal, some of which was probably associated with the burned root shown in Figure 28. Aboriginal ceramics associated with the unit were 5 Deptford Simple Stamp (20 g), 1 Deptford Check Stamp rim (6 g), 1 Altamaha Plain rim (2 g), 1 Irene Incised rim (3.5 g), 1 sand and grit tempered folded rim sherd (2 g), and 5 sherdlets (4 g). Unlike Feature 4, the contextual associations and shape of Feature 6 point more to an historic attribution.

Figure 28. Feature 6 Posthole, 960N 940E. Facing south, 53 cm BS. A root stain appears on the north edge of the unit’s floor.

Feature 7. Survey Unit 920N 960E was located about 5 meters east of Structure C. This location proved to be one of the three most productive (and interesting) areas at the site, as indicated by the following inventory:
Kitchen: Ceramics - 6 plain creamware, 9 plain whiteware, 3 blue hand-painted, 1 green edged, 1 lead glazed earthenware, 1 gray salt glazed stoneware; Glass - 10 green glass (8 round section, 2 flat section), 8 clear (round section), 1 blue (round section)
Architecture: 12 cut, 23 wire nails; 2 window glass; 54 brick fragments, 3384 g tabby plaster
Clothing: 1 brass button, 1 bead (Figures 35, 36 37)
Pipe: 3 stem fragments
Bone: 156 (246 g); 18500 ml shell (including 342 whole)
Aboriginal: 1 St. Simons Fiber Tempered (12 g); 2 grit tempered plain (6 g), 1 check stamp (2 g), and 1 incised (2 g); 1 sand tempered plain (5 g); 4 sherdlets (4 g).

Other than the big barn, Structure C is the only Reynolds-era restoration at Chocolate that still retains a tin roof, and it is late restoration activity that probably accounts for the relatively high frequency of wire nails (and the tabby plaster) in this unit. As noted earlier, the presence of shell can be a by-product of construction and/or food processing activities. 920N 960E produced the highest frequency of whole shells and the 3rd highest volume of overall shell at the site, with the second highest quantity of plaster. The general co-occurrence of heavy plaster and shell quantities at Chocolate would seem to indicate that the latter served a primarily although certainly not exclusively architectural function. This is further demonstrated in the Artifact Distributions section of this report.

Besides this productive artifact assemblage, a substantial cultural feature was identified at the bottom of the unit. Unfortunately, Feature 7 was not formally defined until 83 cm BS, which was 5 cm from the bottom. As shown in Figure 29, this feature contained a series of thin alternating layers of light and dark sand under a heavy concentration of shell. The bottom was uneven, and the sand fill seemed to be clean below the shell fill, which may be part of a midden

Figure 29. 920N 960E, East Profile of Feature 7, 87 cm BS.
deposit. Feature 7 is believed to be a root cellar or trash pit. Its presence indicates the possibility of an additional structure or structures in the vicinity of Structure C. Since 920N 960E is located a few meters west along a center line formed by the eastern row of tabby cabins, this is a credible hypothesis for future testing.

Feature 8. Twenty meters to the east, in Unit 920N 980E, the edge of another historic pit was uncovered. As seen in Figure 30, it appears to be a shell-filled trash pit with a thin bottom layer of clean sand. Feature 8 extended across the northeast corner of the unit, and bottomed out at 62 cm BS. Although it was first recognized at 49 cm, the feature fill below this depth was largely devoid of artifacts, producing just shell (50 ml, with 5 whole), plaster (12 g), and charcoal (< 1 g). The survey unit contained an undiagnostic historic sherd and a green glass fragment, 9 cut nails and 2 window glass fragments, 52 small bone fragments (32 g), 9400 ml of shell (71 whole), 654 g of tabby plaster, and 11 g of charcoal. This unit is offset from the east slave cabin line by 7 or 8 meters, and the feature within it could conceivably be associated with a subsurface cabin foundation or other structure.

![Figure 30. East Profile of Feature 8, 920N 980E, 62cm BS.](image)

Feature 9. Near the east periphery of the site, along a line corresponding to the north wall edge of Structure H, a survey unit at 820N 1060E uncovered a complex feature. In its first iteration (Figure 31), Feature 9 was recognized in the southeast corner of the unit at 30 cm BS; it extended 14 cm to the north and 32 cm to the west at this depth. Upon further excavation, however, an extension that undercuts the original Feature 9 sloping pit was revealed in the south wall of the unit and is presented in Figure 32. It was designated as Feature 10. The unusual shape and slope of this feature suggests a rodent burrow or root disturbance of some kind, and it appears to have been cut by (and therefore precedent to) Feature 9. Note also in this photograph...
that the bottom of Feature 9 contains a chunk of structural tabby as well as shell and plaster debris in the fill. In conjunction with the alignment of the survey unit and feature with the

Figure 31. Feature 9, 820N 1060E, 30 cm BS. Facing south.

Figure 32. Features 9 and 10, 820N 1060E, 61 cm BS. Facing south.
Structure H north wall, this architectural-related material may indicate that Feature 9 was a foundation trench for a robbed wall. An alternative explanation would be that it functioned as a trash pit, as this unit—if not the feature itself—contained a moderate amount of domestic debris, including 4 plain whiteware sherds, 5 green and 2 yellow bottle glass fragments, 18 cut nails, 17 small fragments of unidentified iron and 1 of brass, 17 bone fragments (7 g), 2 brick fragments 58 g of plaster, 900 ml of shell (5 whole, as well as a knobbled whelk), part of a four-hole bone button (Figure 35 below) and a 5/64 diameter white clay pipe stem. (A note on whelks: an informal survey of most of the Chocolate slave cabin foundations revealed the presence of whelks on the surface at virtually every single one. Since these creatures migrate to live on near-shore or inter-tidal mud flats twice a year, they are conveniently available as food items at these times and were apparently used as such by the past residents of Chocolate.)

Below 30 cm BS, Feature 9 contained a small amount of bone (10 at 2 g), 4 cut and 1 unidentified nail fragments, 3 iron strap fragments, 30 g of charcoal, 1 brick fragment, the tabby fragment, and 8 g of plaster. The comparatively “heavy” concentration of artifacts from the unit fill probably corresponds to a midden deposit, while the feature itself contains only inadvertent debris and is therefore tentatively labeled as a foundation trench. Determining the function of this interesting feature is certainly something that can be tested in the future.

Feature 14. Just east of the long tabby structure designated as “N,” the final feature was defined. Survey Unit 900N 920E was excavated to 90 cm BS under the mistaken assumption that it intercepted a deep historic midden. However, as seen in Figure 33, the north profile of the “midden” bears all the hallmarks of a pit. The bottom of the pit appeared at 111 cm BS and appeared to be flat. As can be seen in the photograph, the highly mottled sand feature fill is clean, with few artifacts of any kind recovered from it (2 g of plaster and 1 g of charcoal). The unit was more productive, yielding a sherd of blue transfer printed pearlware and 4 round-section glass fragments (2 green, 1 clear, and 1 from a small vial); 10 cut nails and 1608 g of plaster.
along with 28 brick fragments and 1100 ml of shell (193 whole, and a whelk); and 37 bone fragments (21 g). Three fragments of fired clay and several aboriginal sherds were also included: a St. Simons Fiber Tempered (2.5 g), and 4 sand and grit plain (13 g).

If Feature 14 is a trash pit, it possesses an exceedingly clean bottom fill. The extensive depth of this feature—the deepest found at the site—would more likely suggest a cellar function. If so, it is associated with a structure that does not appear on any map. This location is certainly a candidate for further testing.

Historic Artifacts

Overall artifact tallies appear in Table 2, which provides a summary of artifact groups and classes loosely based on South’s (1977) approach for historic sites. These totals include materials associated with the features that were described above, while the FS 1 unprovenienced artifacts are not included. Tables 3 and 4 list the historic and aboriginal ceramics, respectively. After briefly discussing and illustrating various selected artifact categories, we will more closely examine the distributional data in terms of artifact density contours maps.

Table 2. Chocolate Plantation Artifact Groups and Classes.

<table>
<thead>
<tr>
<th>Kitchen Group</th>
<th>Count</th>
<th>Weight</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramics</td>
<td>258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Container Glass</td>
<td>241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kitchenware</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td>1322</td>
<td>939</td>
<td></td>
</tr>
<tr>
<td>Modern Glass</td>
<td>204</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Architecture Group</th>
<th>Count</th>
<th>Weight</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut Nails</td>
<td>399</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spikes</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pintal</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strap Hinge</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brash Washer</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window Glass</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tabby Plaster</td>
<td></td>
<td>20374</td>
<td>195.15</td>
</tr>
<tr>
<td>Shell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire Nails</td>
<td>56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Furniture Group</th>
<th>Count</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brass Tack</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arms Group</th>
<th>Count</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead balls and shot</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firing Caps</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell casings</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead slug</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shotgun shell</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clothing Group</th>
<th>Count</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Buttons</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beads</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspender fastener</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Personal Group</th>
<th>Count</th>
<th></th>
<th></th>
</tr>
</thead>
</table>
Tobacco Pipes
- White Clay Stem 16
- White Clay Bowl 9
- Stub Stem Bowl 2

Activities
- Sad Iron 1
- Doll Arm 1
- Stones 22

Aboriginal Ceramics 318 851.0\(^1\)
Fired Clay\(^1\) 528 301.2\(^2\)
Debitage 17 24.0

\(^1\)Measured as weight in grams
\(^2\)Measured in liters

Table 3. Historic Ceramic Types From Chocolate.

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Percentage(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead glaze earthenware</td>
<td>11</td>
<td>4.4</td>
</tr>
<tr>
<td>Lead Glaze Redware</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>Delftware, Plain</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Slip Decorated Earthenware</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Astbury</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>Creamware, Plain</td>
<td>20</td>
<td>8.1</td>
</tr>
<tr>
<td>Pearlware, Plain</td>
<td>16</td>
<td>6.4</td>
</tr>
<tr>
<td>Pearlware, Blue-On-White Hand Painted</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>Pearlware, Green-On-White Hand Painted</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Pearlware, Blue Edged</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>Pearlware, Green Edged</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>Pearlware, Annular Brown</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>Pearlware, Annular Polychrome</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>Pearlware, Transfer Print Blue-On-White</td>
<td>10</td>
<td>4.0</td>
</tr>
<tr>
<td>Whiteware, Plain</td>
<td>98</td>
<td>39.7</td>
</tr>
<tr>
<td>Whiteware, Blue-On-White Hand Painted</td>
<td>4</td>
<td>1.6</td>
</tr>
<tr>
<td>Whiteware, Blue Edged</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Whiteware, Green Edged</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>Whiteware, Annular</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>Whiteware, Annular, Blue</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>Whiteware, Annular, Brown</td>
<td>6</td>
<td>2.4</td>
</tr>
<tr>
<td>Whiteware, Annular, Polychrome</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>Whiteware, Annular, Polychrome Finger Paint</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>Whiteware, Annular, Dendritic</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Whiteware, Transfer Print Blue-On-White</td>
<td>18</td>
<td>7.3</td>
</tr>
<tr>
<td>Whiteware, Transfer Print Brown-On-White</td>
<td>6</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Whiteware, Transfer Print Polychrome 2 0.8
Yellowware, Plain 1 0.4
Stoneware, Brown Salt Glazed 9 3.6
Stoneware, Gray Salt Glazed 10 4.0
Stoneware, Alkaline Glazed 1 0.4
Porcelain, Plain 1 0.4
Unidentified 10 -

Total 257

1Excluding Unidentified Ceramics.

Ceramics. Not including the 10 unidentified sherds, 247 ceramic fragments comprising 32 recognizable types were recovered from the survey. Most are refined wares: including the two sherds of delftware and slip decorated earthenware, 86% of the ceramic assemblage is composed of presumed serving wares. Due to their generally small sizes, it was not possible to assign a form to most of the sherds, although a flat-sectioned or round-sectioned attribute was noted. The net result of this minimum-level shape analysis is to simply note that all 22 sherds of annular ware, regardless of variety, were round sectioned, which is consistent with the bowl forms with which these wares are often associated. Beyond this unsurprising discovery, little can be gleaned.

Another way to parse the ceramic data is to note if particular types are spatially associated with slave cabins versus the main house and other, non-slave structures. While this is explored in more detail in the next section using GIS analysis, at a more macroscopic scale we can roughly divide the site into a “slave cabin area” versus “planter area.” For the purposes of such a comparison, the 39 survey units found at or below the 900 N line (see Figure 22) have been labeled as primarily slave cabin-associated, and above this line the remaining units as planter-associated, including various non-domestic structures. It might be expected for the slave areas to be associated with higher percentages of utilitarian wares (lead glazed earthenware, redware, and salt-glazed stoneware) than the planter areas, but the difference was minimal: 14.8% (n=17) to 12.9% (n=17), respectively, out of a total of 115 sherds in the lower section and 132 sherds in the upper parcel. Postbellum re-occupation as well as small sample size may factor into this result. Another common assumption for slave sites is that annular wares are more commonly associated with slave foodways than with those of planters. For the slave cabin area, the 12 sherds of various annular ware styles comprised 10.4%, with 10 sherds, or 7.6% associated with the planter-area ceramic assemblage. Again, the sample is so small that this may not constitute a significant difference. Targeted test pits in clearly identifiable slave and planter locations would be expected to provide more meaningful comparisons.

A look at Table 3 makes it clear that colonial-period ceramics recovered during the 2006 survey are in the minority; the grand total for delftware, Astbury, slip decorated earthenware, and all the creamware—which could easily post-date the colonial period—is 24 sherds, or 9.7% of the total recognizable ceramics. Thus, the intriguing structures that appear in the Chocolate vicinity on the 1760 Yong map (Figure 3) seem to be associated with scarce archaeological manifestations of a pre-Harrington colonial occupation. Since the survey approach employed at Chocolate was designed to provide a wide-coverage sample of the material culture present there, and little in the way of colonial artifacts or early coherent features were found, it is probably safe to say that a colonial presence was probably absent. In addition, “early” versus “late” ceramics do not seem to be spatially distinct at a finer scale, as discussed in the Artifact Distributions
section below. While a colonial occupation certainly cannot be ruled out, its presence at Chocolate is best described as “faint.”

Iron Artifacts. Figure 34 illustrates a sample of various iron artifacts after undergoing initial cleaning. The pintle (FS 28) and strap hinge (FS 2) are architectural related. The former was found at the southern end of the site and probably was used to mount a window shutter in a nearby slave cabin. The broken strap hinge was recovered about midway between the two barn complexes and was most likely used to support a door in one of those structures. The four round holes in this item indicate that it was mounted using either screws or wire nails. If the latter, the hinge must have been used in the late 19th century.

![Figure 34. Miscellaneous Iron Artifacts. Clockwise from top: sad iron, pintle, hoe fragment, strap hinge.](image)

The sad iron (FS 54) and hoe (FS 1) can be classified under Activities. Found in fill just above the Feature 7 trash pit/root cellar adjacent to Structure C, the sad iron gets its name from its solid or heavy weight. This version is a no-nonsense solid iron that apparently did not have a detachable handle, which was patented in 1870 by Mary Florence Potts (Glissman 1970:80). On the traditional Tuesday ironing day, more than one was often employed to allow heating of the “spares” (Carter 2006). Without running water, gas, or electricity, laundry cleaning and ironing would have been an extremely time-and labor-intensive process, at Chocolate and elsewhere.

Buttons. As shown in Figure 35, one suspender fastener and five buttons were recovered from the site. Both brass buttons are flat disks lacking mold marks and with each eye set in a small foot, but the eye on the button on the left is of iron. Neither conforms exactly to the brass types illustrated by Noel Hume (1974:91). The slightly smaller example originates with the productive survey pit adjacent to Structure C, while the southernmost survey unit at the site
(780N 1020E) produced the larger button. This item no doubt was part of a slave’s apparel at Chocolate. This is probably also the case for the two bone buttons, both of which were found in unit’s adjacent to slave cabins (820N 1060E and 820N 1040E). The small button in the center has presumably been in contact with oxidized copper, thereby taking on cuprous salts and acquiring a dark green color. By contrast, the presumably more expensive shell button was noted on the surface inside the Structure E big house foundations. It is probably represents or is at least a close version of Noel Hume’s Type 22, which occurred between 1827 and 1865 (1974:90). The brass suspender strap fastener was found adjacent to the big barn. An alternative interpretation for this artifact, given its provenience, is that it was hardware for a saddle or reins.

Beads. Three beads were recovered during the survey. Although they are listed under “Clothing,” they may well have functioned as far more than simple adornment, as suggested below. As shown in Figures 36 and 37, they can be described as follows:

FS 2, an amber six-sided faceted wire-wound bead; this corresponds most closely to the Kidd and Kidd typology (1970:52, 85) as WIIc5, although they define this type as possessing five rather than six facets per row. The Chocolate example has two rows of facets, which appears to be more characteristic of wire-wound beads than the three rows found on most tube beads. This is an observation derived from the Kid and Kid illustrations (1970:52, 55, 59, 62). The hole-to-hole measurement is 4.9 mm. The 1000N 980E survey unit was the first one dug, and it was located approximately 39 m east of the restored main barn (Structure R). In viewing a picture of this artifact, Marvin Smith (pers. comm.) has indicated that it appeared to be a “decahedral
bead.” While these usually fit the time frame of about 1690-1760, they have also been found on Creek sites in Oklahoma (post-Removal).

FS 79, a dark purple (black in reflected light) faceted tube bead, Type If5, with six facets on each of three rows. It measures 3.5 mm. This bead was recovered in an unambiguous slave cabin area, approximately 15 meters west of Structure J in 800N 980E. Smith indicates that this bead is similar to "Russian" beads, so called because they are common in Alaska. They seem to postdate 1813 or so.

FS 54, an opaque blue bead with an eroded wavy (spiral) white line surface decoration. This is probably a function of a layer that has fractured off the blue core. It most closely corresponds to Type Ilj6, although the Kidds record a clear rather than opaque bright blue color (1970:75). It measures 2.9 mm. It was found in 920N 960E, approximately 4 m to the east of Structure C. Smith has seen similar beads, all in contexts that postdate 1760.

Figure 36. Beads From Chocolate. Left to right, amber faceted wire bead, FS 2; dark purple faceted tube bead, FS 79; blue tube bead with white appliqué (eroded), FS 54.

While none of the beads provide tight temporal control, it is at least safe to say that none are types that would be expected to be associated with 17th century Spanish missions. Stine et al. argue that bead types and colors found at southern plantation sites were primarily a function of slave “cultural preference and consumer choice” rather than simply market availability (1996:57). Their overview of the informal slave economy reinforces this contention. Antebellum beads could have multiple meanings that were imbedded in African belief systems. They could be worn as simple adornment, but also as social signifier, and as charms to ward off the evil eye,
bring good luck or prevent sickness. According to ethnohistoric sources reviewed by Stine et al. (1996:63-64), blue beads were frequently associated with charms, while black beads were sometimes associated with evil or death. Blue is consistently the most common bead color in the colonial and antebellum periods across the South, including coastal Georgia plantation sites (Hardy 2002). The presence of blue, black and amber beads at Chocolate may have communicated multiple meanings and implications to slaves—meanings that Swarbreck, Rogers or Spalding most likely missed. Echoing Thomas (1998: 545), Meredith Hardy suggests:

To the owners, the slaves were spending their meager earnings on seemingly meaningless baubles, but in fact, they represent a continuity of belief systems that changed in accordance with their belief systems. Given their religious function in Africa, the use of glass beads could even be interpreted as an overt statement of defiance on the part of the slaves against these owners, given their forced exposure to the belief systems of their owners. (2002:121-122)

Figure 37. Close-up Side View of Chocolate Beads. Left to right, FS 2, FS 79, FS 54.

Miscellaneous Artifacts. Figure 38 presents three miscellaneous artifacts from two different groups. The porcelain doll arm (FS 52) has already been discussed as part of the Feature 6 description. A total of 25 widely scattered white clay pipe stems and bowls were recovered from the lower potion of the site, 13 from the planter area and 12 from the slave parcel. Ten of the stems had 5/64 inch bore diameters, while 6 measured 4/64 inch. The FS 10 stem shown in Figure 38 bears an unusual thin brown glaze. Noel Hume remarks that such glazing was an uncommon 18th century innovation (1974:302). Two stub-stem bowl fragments were also recovered, including the molded decoration example (FS 4) that was located in 1000N 940E. The other fragment (FS 53) occurred at 980N 920E. Pfeiffer (1981) indicates stub-stem pipes were used with an inserted reed stem and date from the 1840s to 1900.
Although no personal items are listed in Table 2, the survey uncovered several stones that could possibly have been classified under “Personal” rather than “Activities.” Nine of the 22 stones were small and of unidentified composition; half of these were smooth pebbles, while the other five were rough in form. These may simply represent gravel imported to the site in the 20th century, although they were not found in concentrations, as might be expected for a gravel deposit. Granite made up 4 of the total fragments, while quartz accounted for 5; 1 fragment of worked marble (Figure 39, top left) was also recovered. Five of the largest examples are shown in Figure 39. The quartz fragment at the bottom was found in the southernmost 780N 1020E unit, and may be part of a slave artifact assemblage by virtue of its location. The same could also be said for the FS 68 shale fragment from 900N 1000E. The middle row items are all water-shaped, though of completely different composition. All resemble so-called “worry stones,” but the authors are unaware of any African-based tradition associated with such artifacts. Local residents of Hog Hammock who were shown the FS 117 stone did not suggest any either. Leone and Fry report finding quartz crystals as part of conjuring and divining paraphernalia in Virginian plantation slave sites, but they were always found in deliberately-buried caches (1999:377). Samford (1996:107) also mentions stones as part of Bakango religious and medicinal practices.
Three small slate fragments were identified, one with an incised line on it. These could have been parts of broken writing tablets, or slate shingles. If the latter, more would be expected to be found. Interestingly enough, two of these fragments were derived from units that were directly adjacent to slave cabins: 820N 980E (Structure K), and 880N 1000E (Structure F). The third was found in 960N 940E.

All 22 stones are definitely not native to the coastal strand, and purposeful transport would certainly have been required to Chocolate. When that occurred and by who are difficult questions, and without tighter contextual data they are destined to remain unanswered.

Aboriginal Artifacts

While most of the aboriginal assemblage is undoubtedly prehistoric in origin, some of it may be associated with the historic period. Numerous native occupations on Sapelo are documented for the historic period (Thomas 1993; Worth 1995), not to mention the possible presence of Mary Musgrove. Thus we have chosen to label these artifacts as “aboriginal” rather than “prehistoric.” A total of 317 aboriginal ceramics weighing 847g was generated from the survey units, along with 17 chert debitage pieces (24.0 g) and 528 fired clay fragments (301 g). The latter were typically quite small in size, averaging only about 1/2 g per fragment, and no discernable wattle impressions were noted on any of the fragments. Thus we resist referring to these items as “daub.” A single steatite fragment (4 g) was also found.

Table 4 lists the ceramic assemblage derived from the survey. Our analysis has concentrated on ceramic weight rather than frequency due to the highly variable degree of fragmentation across types. Small ceramic size was the rule rather than the exception for aboriginal types, perhaps due in part to frequent plowing. Except possibly for Feature 4, no clearly discernable prehistoric features were noted, and it may be the case that much of highly-
localized fired clay fragments (at 920N 1040E) were associated with a cooking fire or from fragmentary “baked clay objects” (Williams 1968:320) rather than a wattle and daub structure.

Table 4. Aboriginal Ceramics From Chocolate.

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Weight (nearest ½ gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altamaha Red Slip Plain</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Irene Incised</td>
<td>6</td>
<td>15.5</td>
</tr>
<tr>
<td>Irene Complicated Stamp</td>
<td>11</td>
<td>37.0</td>
</tr>
<tr>
<td>Savannah Burnished Plain</td>
<td>1</td>
<td>18.0</td>
</tr>
<tr>
<td>Savannah Check Stamp</td>
<td>4</td>
<td>15.0</td>
</tr>
<tr>
<td>Savannah Cord Mark</td>
<td>3</td>
<td>10.0</td>
</tr>
<tr>
<td>Savannah Fine Cord Mark</td>
<td>2</td>
<td>8.0</td>
</tr>
<tr>
<td>Grit and Grog Tempered Plain</td>
<td>2</td>
<td>3.0</td>
</tr>
<tr>
<td>Sand and Grit Tempered Plain</td>
<td>6</td>
<td>18.0</td>
</tr>
<tr>
<td>Sand and Grit Tempered Cord Mark</td>
<td>1</td>
<td>4.0</td>
</tr>
<tr>
<td>Sand and Grit Tempered UID Decorated</td>
<td>3</td>
<td>10.0</td>
</tr>
<tr>
<td>Grit Tempered Plain</td>
<td>12</td>
<td>50.0</td>
</tr>
<tr>
<td>Grit Tempered Incised</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Grit Tempered Check Stamp</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Grit Tempered Complicated Stamp</td>
<td>3</td>
<td>14.0</td>
</tr>
<tr>
<td>Grit Tempered UID Decorated</td>
<td>4</td>
<td>19.0</td>
</tr>
<tr>
<td>Sand and Grog Tempered Plain</td>
<td>2</td>
<td>3.0</td>
</tr>
<tr>
<td>Sand and Grog Check Stamp</td>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>Sand and Grog Simple Stamp</td>
<td>1</td>
<td>15.0</td>
</tr>
<tr>
<td>Sand and Grog UID Decorated</td>
<td>1</td>
<td>11.5</td>
</tr>
<tr>
<td>Sand Tempered Plain</td>
<td>13</td>
<td>37.5</td>
</tr>
<tr>
<td>Sand Tempered Incised</td>
<td>2</td>
<td>3.0</td>
</tr>
<tr>
<td>Sand Tempered Cord Marked</td>
<td>3</td>
<td>13.5</td>
</tr>
<tr>
<td>Sand Tempered UID Decorated</td>
<td>3</td>
<td>7.0</td>
</tr>
<tr>
<td>St. Johns Plain</td>
<td>26</td>
<td>27.0</td>
</tr>
<tr>
<td>Grog Tempered Plain</td>
<td>2</td>
<td>12.0</td>
</tr>
<tr>
<td>Wilmington Plain</td>
<td>13</td>
<td>64.5</td>
</tr>
<tr>
<td>Wilmington Cord Marked</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>Deptford Check Stamp</td>
<td>8</td>
<td>27.5</td>
</tr>
<tr>
<td>Deptford Bold Check Stamp</td>
<td>1</td>
<td>6.0</td>
</tr>
<tr>
<td>Deptford Simple Stamp</td>
<td>5</td>
<td>20.0</td>
</tr>
<tr>
<td>Deptford Linear Check Stamp</td>
<td>3</td>
<td>13.0</td>
</tr>
<tr>
<td>St. Simons Fiber Tempered Plain</td>
<td>27</td>
<td>228.5</td>
</tr>
<tr>
<td>St. Simons Fiber Tempered UID Decorated</td>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>Sherdlet/UID</td>
<td>143</td>
<td>121.5</td>
</tr>
<tr>
<td>Steatite</td>
<td>1</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Totals | 318 | 850.0 |
By far the most common recognizable ceramic type was, surprisingly, St. Simons Fiber Tempered Plain. This ware is typically thick-bodied, and this characteristic no doubt influences the weight total. This type is virtually identical to the other regional varieties found on the coast (DePrater 1979; Williams 1968). Unfortunately, the next most common “type” was the dreaded “sherdlet,” a label that melancholy archaeologists inevitably confer on small (less than ½ inch), unidentifiable ceramic fragments. The 0.8-gram-per-sherd average weight has a lot to do with how commonly this category was invoked during the Chocolate analysis.

The original unsigned and undated State Site Form for 9MC96 makes no mention of any early prehistoric components. Apparently based on observations of surface material, the Form notes that “the fields and marsh edge are littered with oyster shell and other cultural debris—the material appears to be mainly Irene.” However, the Altamaha, Irene and Savannah series compose just 12% of the aboriginal ceramic weight from the survey. Examples of these “late” sherds, including an Altamaha Complicated Stamp sherd from FS 1 (not included in Table 4), are presented in Figure 40. Figure 41 presents a distinctive Savannah Burnished Plain sherd and rim profile. The smooth exterior bears numerous burnishing marks, and the form was a fairly unusual shallow cazuela bowl. No other sherds of this type or form were found at the site. “Early” aboriginal sherds, primarily Deptford decorated wares but including a large fiber tempered rim, are shown in Figure 42. Ceramic distributions are discussed in the next section.

Figure 40. Late Aboriginal Ceramics From Chocolate. Top row (L-R): Irene Incised, Irene Incised rim, Savannah Check Stamp, sand tempered overstamped cord marked, Savannah Fine Cord Marked; Bottom: Irene complicated Stamp, Irene complicated Stamp, Irene Incised, Altamaha Complicated Stamp, Altamaha Red Film.
It is clear from Table 4 that Chocolate has been the focus of aboriginal habitation for thousands of years. Virtually all prehistoric periods are represented from the Late Archaic on, including Altamaha and St. Johns types. The latter are commonly associated with both Savannah and Irene phase sites on the middle Georgia coast. Although few in number, their occurrence at Sapelo
indicates relationships (e.g., social, political, economic) with contemporary Timucuan-speaking
groups of northeast Florida.

The extensive time depth represented in Table 4 was not apparent from the earlier
informal Site File observations of surface materials, and this discovery affirms the value of a
broad-scale systematic survey approach on Sapelo.

Historic Artifact Distributions

A series of historic and aboriginal artifact distribution maps have been constructed from
the survey data, as explained in the methodology section. These maps provide site-wide spatial
and density information for various artifact types, wares, and classes. In conjunction with the
feature information outlined above, this spatial artifact data provides both macroscopic and area-
specific images of settlement patterning at Chocolate. These data also can serve as the basis for
future archaeological testing and for managing the important cultural resources that exist there.

Although the interval-scale color ramps appearing in these maps are unique to each
artifact class and type, in all cases a zero value is indicated by green and a red contour
symbolizes the greatest frequency, weight, or volume that occurs for each artifact category.

Kitchen Group. Figure 43 models overall historic ceramic frequencies at the site. At the
outset it should be pointed out that we were not exactly overwhelmed by ceramic counts from
this survey, nor were high frequencies expected given the small sample size—the 116 units that
were dug to sterile had a mean of just 2.2 sherds each. Nevertheless, it is possible to derive some
meaning from the relatively “light” frequencies that were recovered.

Immediately apparent in Figure 43 is the contrast between the presence and absence of
sherds above and below the current access road into the site from High Point Road. A unit
adjacent to and behind the kitchen of the Sears building (Q) provides a possible exception to this
generalization, as it yielded four sherds of whiteware, but these are almost certainly of
postbellum origin. We suggest that what is illustrated here is nothing short of land use writ large,
that is, at the site level: this and other maps described below consistently show that the upper
(northern) area of the site contained no buried antebellum domestic components. Instead, this
area seems to have been used exclusively for farming activities (hence our appropriately green
color ramp signifying a lacuna of artifacts).

A tree line that occurs at a suspiciously right angle to the Chocolate access road presents
the possibility that another road at the site might have been bounded by slave cabins or other
structures. However, this seems not to have been the case, as little if any architectural or midden
material was noted in or adjacent to it. Instead, this tree line may simply mark the access route to
the caretaker’s house and dog pen located on the northeast edge of the site (Cornelia Bailey,
2006, pers. comm.). Although he doesn’t discuss it, Simmons (2004, Figures 3 and 6) records a
linear anomaly using gradiometry and conductivity that roughly corresponds to one end of this
road and may signal the presence of buried metal utility pipes serving either the caretaker’s
house and/or the Structure B “hunting lodge.” It should also be remembered that the pecan trees
along the current access road are most likely a Coffin-era enhancement. The tree lines to this
later road and the possible caretaker/dog pen road are of similar stages of growth, indicating a
contemporaneous relationship. Survey units that by chance were located in both access roads
were not productive. This indicates no occupations were present prior to the establishment of
these roads, which would seem to support the notion that they were a late addition to the site’s
landscape.
According to the survey data, relatively heavy concentrations of ceramics are present in five primary areas at Chocolate. Adjacent to the Mud River, 980N 920E was a heavy ceramic locus, and in fact contained the highest sherd count of any unit. This may be a midden associated with the presumed early structure that the Feature 1 posthole is part of. Near the main house, we have already discussed the discovery of the Feature 7 root cellar or trash pit at 920N 960E (next to Building C), and how this might indicate the possible presence of an additional non-tabby structure. The heavy sherd count and the presence of other artifacts at this location may support either feature interpretation. Forty meters north, 960N 960E is a second locus of ceramic disposal that is about 20 m northeast of the main house. Although no feature was noted there, a posthole (Feature 6) was recorded in the adjacent unit to the west. The unit directly in back (south) of the main house is also moderately sherd-heavy, and possibly represents a Brunswick-style disposal pattern (South 1977), while the front entrance (facing the Mud River) shows little sheet deposit refuse. Another possibility is that the heavier ceramic contours behind the house actually result, at least in part, from sheet deposits associated with Structure B, which was used as a hunting.
lodge in the 20th century. But whatever the source, the site’s western quadrant is a busy one in terms of ceramic distributions.

Besides the north loci, three slave cabin locations also exhibited high sherd counts. Two of these areas are found along the west slave cabin row. One (860N 960E) is next to the northeast corner of Structure L, while the other (820N 980E) is between Structures K and J. Why this row shows heavier ceramic disposal than the east row is unknown. Just west of the Structure H foundation and adjacent to High Point Road, 800N 1060E lacked any cultural features but was certainly one of the most productive units at the site, for virtually all classes of artifacts. Based on the presence of a plastic button recovered from a test unit, Simmons proposed a postbellum occupation, or rather re-occupation, for this cabin (2004:59). Oral history indicates that Structure H was a possible home site for the Jacob Green family (Maurice Bailey, 2006, pers. comm.). It may be that the high artifact counts for this unit reflect refuse from both the antebellum and the postbellum re-occupation periods.

In an effort to isolate “early” versus “late” occupations at the site, ceramic ware distributions were distinguished within the historic ceramic class. The results are illustrated in Figures 44 and 45, which model the frequency contours of creamware/pearlware (plus 2 sherds

![Diagram of ceramic frequency distributions](image-url)

Figure 44. “Early” Historic Ceramic Frequency Distributions.
Figure 45. Whiteware Frequency Distributions.

of Astbury and a single delft fragment) and whiteware, respectively. Since creamware/pearlware types generally date earlier than whitewares (Noel Hume 1974), it was hoped that clear spatial and therefore temporal distinctions would ensue from this analysis. Complicating things somewhat is the (1) overlap between creamware-pearlware and pearlware-whiteware manufacturing and use dates (much of the whiteware shown in Figure 45 may well have been deposited prior to the Civil War), and (2) difficulty in distinguishing between the three wares. That said, all these wares clearly are restricted almost entirely to the lower half of the site (southwest of the access road). Besides the substantial difference in the sheer quantities of the early and late wares, the most obvious difference between them is seen in the absence of the earlier wares directly behind the big house; instead, moderate creamware/pearlware frequencies appear near the riverbank (980N 920E) and between the big house and Structure A. Early wares are noticeably more frequent at one location on the west row of slave cabins (860N 960E), but the ceramic totals for this map are small and may suffer from small sample bias. Since
whitewares seem to be more directly associated with the main house than the earlier wares, this may suggest that it was built and occupied after pearlwares were commonly used at Chocolate. Four of the highest-yielding units for early ceramics correspond to the same units for high whiteware frequencies, suggesting a long period of disposal behavior at these particular locations. That the greatest frequency for the earlier wares occurs adjacent to the Mud River is a possible indication for where testing for the earliest historic components of the site might be focused; an early main house may be located there.

Since whitewares (147, 57%) are more than twice as numerous as the combined creamware (21, 8%) and pearlware sherds (40, 16%) in the total ceramic assemblage, the site’s domestic occupation was evidently more intense in the second quarter of the 19th century than it was earlier. This corresponds to the latter part of Swarbreck’s and the entire Rogers’ occupation at Chocolate. A type-by-type breakdown could provide even finer-grain temporal clarity, but the low frequency of sherds by type (see Table 3) would inevitably lead to hollow chronological conclusions.

Another domestic artifact class is container glass. The site yielded 241 fragments, of which 192 had curved cross-sections and 49 were flat-sectioned. Figure 46 presents the fairly even distribution of the combined glass in the lower half of the site, with the highest frequencies concentrated in some of the same units noted above that exhibit high ceramic counts. In

![Figure 46. Vessel Glass Frequency Distributions.](image)
addition to the agrarian half of the site, container glass is absent in limited areas associated with both rows of slave cabins. Adjacent to Structure H, 800N 1060E contained nearly 30% \((n=70) \) of the site’s total for container glass. Along with the heavy ceramics from this unit, this unusual artifact density reflects the presence of a thick midden associated with it. This high glass count could also reflect the difficulty in distinguishing between modern and historic glass, and the glass assemblage from this unit could be a combination of both. On the other hand, unambiguously modern glass is concentrated largely near the restored barn, suggesting that the majority of the glass near Structure H is pre-20th century.

Finally, another presumed domestic artifact class consists of faunal remains. Although the site did not produce a surfeit of food bone (1322 g, or \(m=11.4 \) g/unit), three units had relatively heavy amounts, as shown in Figure 47. The only slave cabin associated with a significant bone quantity is Structure H (800N 1060E), a reflection of the midden present at this location. The other two relatively heavy bone locations are at 920N 960E and 960N 960E. The former is the location for the Feature 7 root cellar and/or trash pit; the adjacent Structure C, a small restored building, may also be a source of bone. Forty meters to the north, at 960N 960E, a midden was identified that contains notable ceramic and glass artifact quantities in addition to faunal remains. No structural features were noted in this location, which makes the occurrence of a deep midden there all the more interesting.

Figure 47. Bone Distribution, By Weight (grams).
Architectural Group. Spatial analysis of architectural-related artifacts included cut and wire nails, window glass, tabby plaster, and shell. This last category may or may not have anything to do with architectural function, but an argument for such an attribution is offered below.

Figure 48 reveals the cut nail frequency contours \((n = 399)\). Due to the highly oxidized nature of these artifacts, it was often difficult to distinguish between wrought and cut nails. Thus, the possibility exists that a small number of nails that were classified as cut could actually have been wrought. For our purposes, both types at least contrast with more recent round-sectioned wire nails, in form and probably temporally: according to Adams (2002), wire nails begin to be commonly used in the mid-1880s and can therefore serve to identify late, in this case, postbellum occupations. These are shown in Figure 49 \((n = 59)\). While it should be kept in mind that square-sectioned nails are common today, the differences in cut and wire nail distributions are striking. Three slave cabin locations show heavy cut nail concentrations, in contrast to Simmons (2004:76) contention that nails in general were largely absent from slave cabin construction. Structure N, which has an unusually long floor plan, was probably a special use,
nondomestic building, as were the big barn and A1/A2. The heaviest concentrations for the later wire nails occurs, not surprisingly, in the general vicinity of restored buildings: Structures B, C, and D (as well as the main house). Given that Structure H was probably re-occupied, the near-absence of wire nails in that location is surprising.

Figure 49. Wire Nail Frequency Distributions.

Historic window glass provides another architecture artifact class. Again, distinguishing between early and late versions for this category was a difficult task. Figure 50 demonstrates the frequency of window glass that contained bubbles or patination; unpatinated window glass was included under the modern category and does not appear in these contours. While this is an admittedly imperfect approach to distinguishing between “old” and “new” glass, it is believed to provide a reasonable image of the presence or absence of historic window glass at Chocolate. That image is revealing: the slave cabin areas are a sea of green, punctuated by four small islands of single fragments of window glass. Several local residents from Hog Hammock were not the
least bit surprised by this finding: they stated that slave cabins were not equipped with glazed windows, but instead simply had wooden shutters (“board windows”).

The big house and Structures C and D show more robust frequencies, as do the A1/A2 barn and the Structure R restored barn. The density of window glass at the north corner of the latter building (23 fragments from 1020N 940E) probably represents an intentional deposit, perhaps as part of a window replacement process when the barn was restored by Coffin. Complicating this unit’s interpretation was the presence in it of a modern ditch containing a live utility line.

Another artifact class that was subsumed under the architecture group is tabby plaster. This type of tabby lacks the coarse shell of structural tabby and as a consequence is much more fragile. It was used primarily as a finishing surface. We quantified all that was recovered by weight, and the plaster distribution is shown in Figure 51. The most distinctive aspect of this distribution (21368 g total) is the tendency of significant quantities of plaster to be concentrated near the big house or special-use structures but not near slave cabins. As with window glass, this
indicates a caste-based disparity in material culture associated with a basic aspect of life, in this case housing. Apparently glazed windows and plaster finishes were luxuries that were denied to slaves by the plantation owners.

Figure 51. Tabby Plaster Distribution, By Weight (grams).

A final artifact class that might legitimately be included under the architecture or kitchen groups (or both) is shell. Due to time and logistical constraints, the extensive quantity of oyster shell that was found at Chocolate was measured in the field by volume rather than weight. The resulting distribution map appears in Figure 52. There is a moderately strong correlation (Pearson’s r = 0.69) between the plaster, which is an unambiguous architecturally-linked class, and shell, which may be generated as a food processing by-product. On the other hand, shell density contours are vastly different from the food bone contours shown in Figure 47. At the very least this suggests that shell deposits at historic Chocolate were more closely associated with and related to building construction, as a raw material for manufacturing tabby, than as a source of food.
Arms Group. Due to the small number of recovered musket ball/shot (4) and firing caps (5), no distribution map was attempted for this group. However, it should be noted that two percussion caps were found adjacent to Structure F, while a musket ball was recovered next to Structure I. Recall also that a gunflint was found by UWG in association with this same cabin. This strongly suggests, if not absolutely establishes, that some of the slaves at Chocolate had access to firearms. The rest of the arms assemblage is associated with the big house and the barn.

Artifact frequencies for Clothing, Tobacco Pipe, Personal, and Activities were so sparse as to preclude the production of meaningful distribution maps.

Aboriginal Artifact Distributions

Although the sample of aboriginal ceramics was modest (846 g), it is possible to present the overall ceramic distributions, and to distinguish distributions by wares. Figure 53 depicts the combined aboriginal ceramic weights, including sherdlets, for the site. A word of caution when viewing these maps: a little bit goes a long way. The high concentration depicted
Figure 53. Aboriginal Ceramic Distributions, By Weight (grams).
in 860N 960E is primarily the result of the recovery of the single fiber-tempered sherd illustrated in Figure 42.

Immediately apparent in Figure 53 is the low but widespread distribution of ceramics, particularly compared to the more restricted historic ceramic pattern shown in Figure 43. Despite the broad overall distribution, the heaviest concentrations appear in the western corner of the site; perhaps this is what the State Site Form referred to as the “the fields and marsh edge” that were “littered” by artifacts. No prehistoric features were encountered in the areas of heaviest ceramic concentrations, and the baked clay distribution does not match up in any one-to-one fashion with ceramics. It is therefore unlikely that these fragments are associated with a wattle and daub structure.

Since St. Simons Fiber Tempered Plain is both the earliest and the most abundant aboriginal ceramic type found, we have presented its weight distribution contours in Figure 54.

Figure 54. Fiber Tempered Distributions, By Weight (grams).
Some isolated finds are apparent in this map, and they are largely distinct from the other aboriginal ceramics. When the “late” aboriginal ceramics (defined as Altamaha, Irene, and Savannah types) are mapped, as seen in Figure 55, a clear difference in distribution occurs compared to the fiber tempered ware, with the Mississippian component more oriented toward the river’s edge. While the small samples generated for these comparisons are less than ideal, this apparent distinction can at least serve as a guide to further testing of aboriginal settlement patterning.

Figure 55. Late Aboriginal Ceramic Distributions, By Weight (grams).

Remote Sensing in 2006

In addition to the basic survey approach described above, our efforts were supplemented by the application of remote sensing technology in two areas of the site. Dan and Rita Elliot kindly donated a day of GPR work at Chocolate, and several intriguing real-time anomalies appeared in the data that was generated with their equipment. Using the UTC grid coordinates,
they sampled a 20 m (N-S) by 40 m (E-W) section between Structures R and A2 (Figure 56), and a 25 m (N-S) by 20 m (E-W) section east of Structure C; both areas had produced historic features during the UTC survey. The final results of the GPR approach are being analyzed by the Elliots.

Figure 56. Dan Elliot and Norma Harris Conducting a GPR Survey. Structure A1 appears in the left background.

Archaeological Education and Outreach

An important goal of this project was to develop an on-site outreach program that presented the results of the UTC research to inhabitants of Hog Hammock and other interested parties. In addition to giving guided tours to visitors of all kinds throughout the project’s duration (including a tourist van that arrived during the very last hour of fieldwork), UTC undertook a more formal education and outreach effort on Memorial Day (May 29, 2006). Preceded by several weeks of flyers and word-of-mouth announcements facilitated by Michele Johnson, Program Director of the Sapelo Island Cultural and Revitalization Society (SICARS), UTC hosted an “Archaeology Day” celebration that was open to the public. Approximately 35 residents of Hog Hammock and about 25 other visitors viewed the excavations, field lab activities, interpretive presentations and preliminary GIS maps, and artifact displays that highlighted the survey process and the material recovered from the site up to that point (Figure 57). Several of the Hog Hammock residents are descended from slaves who lived and worked on the antebellum plantations on Sapelo Island, and they showed a keen interest in the exhibits and presentations. They also peppered the UTC researchers and volunteer Norma Harris of the University of West Florida with a barrage of questions about what had been found, what archaeological methods were used, and our interpretations of what was recovered. Since humans are so visually-oriented, most people seem to have an intuitive understanding and interest in what GIS approaches can produce. Besides providing scientific information for testing hypotheses and addressing CRM needs, GIS offers a way to connect with nonarchaeologists on a
level that they can understand and appreciate. It is this last application that our work as archaeologists at Chocolate ultimately can have the greatest impact.

The Archaeology Day program turned out to be an interactive process: oral history information concerning the Reynolds-era use of the site was provided to us by several eyewitnesses. It is fair to say that the outreach achieved by this program occurred in two directions.

Figure 57. Sapelo Island Residents View Artifacts as Part of Archaeology Day.

Summary and Recommendations

Despite years and perhaps centuries of plowing, the archaeological record at Chocolate is remarkably intact, and includes the presence of both significant features and artifacts relating to the adaptations, lifestyles and activities of Native American, African American, and Anglo-American occupants. The systematic subsurface survey at 9MC96 successfully identified numerous features and artifacts representing both prehistoric and historic components. The wide range of artifacts from both eras that are present in the survey collection, along with the presence of intact archaeological features, emphasize the rich archaeological potential of this site. The survey also documented recent disturbances that have impacted Chocolate. As expected, they consist primarily of utility lines associated with extant buildings. No evidence of looting was noted, and this stands in stark contrast to what would be found at just about any other significant archaeological site on the entire Georgia coast.

The application of GIS methods to the survey data has provided settlement patterning information that cannot be obtained in any other way, and it is certainly applicable at other sites on Sapelo Island. However, we should also acknowledge that the current landscape at this particular site is ideally suited for the methodology that was employed there. Except on the margins of woods, a minimum of clearing to create line-of-sight transects for laying out the grid was necessary by the UTC crew. Thanks to DNR’s regular maintenance of the surrounding
fields, almost all of the survey effort could be devoted to establishing a grid and completing
survey excavations.

Considering the small size and number of the units, along with their 20-m interval, the
UTC survey identified a surprising number of cultural features. This indicates that a much larger
number of features are undoubtedly present at the site. Several that we discovered certainly merit
further investigation. Some that probably relate to the pre-Swarbreck era are not associated with
extant tabby foundations. Although “early” artifacts are not abundant, they are present, as are
several non-tabby features in the vicinity of the riverbank. It is this area, roughly between the big
house and marsh, west of the big barn, that would be expected to yield evidence of the earliest
historic components. What has become clear is that there is a hidden, possibly early, dimension
to Chocolate that does not necessarily revolve around the substantial tabby remains that are so
prominent there. The preliminary results of the Elliots’ GPR survey, along with Simmons remote
sensing work, support this contention. Evidence of postbellum occupation at Chocolate is also
present, and the archaeological manifestations of adaptations that occurred in the Reconstruction
Period can provide a valuable portrait of post-slavery agency and self-reliance during a dynamic
part of Sapelo’s history.

Due to the incursion of the tree line on the west slave cabin line (see Figure 22), the
survey grid did not extend beyond the slave cabins in this portion of the site. Additional
surveying beyond this line of cabins is highly recommended in this area, for three reasons. At the
very least, comparison between the two rows of cabins will be possible. Extending the survey
also will allow a more complete spatial definition of artifact distributions that eliminates the
“margin effect” from extrapolation that was discussed earlier. And finally, it will initiate survey-
level research in Long Row, for which precious little work has been attempted to date. The
possibility of uncovering additional prehistoric material is high for this area, and provides a
further benefit for extending the survey to the west. We also recommend surveying for possible
non-tabby slave cabins adjacent to the riverbank in the field north of Chocolate, as hinted at by
the 1859 US Coastal Survey chart of Sapelo Sound (Figure 10).

The series of artifact distribution maps in this report can be used as a starting point for
generating several test implications for future research at this site. In addition, from a CRM
perspective, these maps provide a graphic representation of areas at Chocolate that are
archaeologically sensitive. Based on these data, we recommend that any future land-altering
projects, including excavation of new utility lines, take these positive (and negative) results into
account. Placement of buried utility lines should seek to avoid archaeologically-sensitive areas
whenever possible. All projects resulting in subsurface disturbances of high-density locations
should be preceded by archaeological survey and testing. For low-level impacts, archaeological
monitoring in sensitive areas is recommended. We also suggest that DNR begin clearing back
the slowly-encroaching (since 1975) tree line that has inexorably encompassed the west row of
slave cabins. The trees and brush that are now obscuring the cabin foundations will inevitably be
transformed into much larger trees that will damage the tabby remains as well as the
archaeological record for a critically important section of the site. Clearing will also allow
efficient survey to take place in Long Row Field, as recommended above.

The pieces of Chocolate that have been investigated in this study form a complex and
multifaceted whole, in time and space. The successful approach documented in this paper can
also be applied to other sites on the Island. For discovery-level research at any site, the
combination of basic subsurface survey with remote sensing yields powerful and complimentary
lines of evidence. Similar data can be generated and compared if the survey protocol used here is
extended to other sites. Consistent methodologies applied on an intersite basis would allow more meaningful comparisons to be made than would a series of piecemeal of separate and unequal approaches.

Our experience on Sapelo has also inspired us to make a final recommendation. The success of the Archaeology Day program brought home to us the intense interest in archaeology and history that Sapelo’s original residents hold. Several of the visitors at the site expressed a desire to be able to view some of the artifacts at Hog Hammock after the research was completed. We think this is an entirely appropriate suggestion and propose SICARS as the ideal facility for an interpretive exhibit. We also recommend that a copy of this report be forwarded to SICARS.

Acknowledgements

The authors are indebted to a number of individuals and organizations that made this study possible. Support for this project included a grant from the UTC Faculty Research Committee, while housing, utilities, and transportation to the Island was provided by DNR. Georgia State Archaeologist Dave Crass was instrumental in his continuous encouragement, advice, and assistance in arranging the logistics for the field school. Juggling an inhuman schedule of competing demands from various and sundry groups, organizations, and individuals, DNR Island Manager Fred Hay was amazingly generous and helpful in the support he showed us, from beginning to end, as was the entire DNR staff at Long Tabby. Michele Johnson of SICARS ensured the success of Archaeology Day and provided us access to the Hog Hammock Computer Laboratory. UTC’s Drs. Ann Holmes and Jonathan Mies kindly identified the mystery stones for us.

The folks who moved the dirt and processed the artifacts are the primary actors in this play. The 2006 UTC Field School consisted of field supervisor Emily Campbell (co-author Orion Kroulek also supervised), and a “dream crew” that included Anna Caduff, Rachel Devan, Benjamin Smith, Allie Stafford, Kristina Uselton, and Rachel Williams. In addition, Ms. Uselton assisted with Photoshop cleanup of some of the maps and assisted with some of the report copy editing. Norma Harris of the University of West Florida volunteered for the GPR and Archaeology Day activities, and she also reviewed portions of this report. We are indebted to her for sharing her energy and expertise in this project. We also would like to thank Rita and Dan Elliot for donating their time and GPR skills to the Chocolate cause.

Finally, we would like to thank the residents of Hog Hammock for the wonderful hospitality they showed us during our entire stay on their Island. All of us will always remember the gracious manner in which we were welcomed into their community. Cornelia Bailey was especially generous in sharing with us her vast knowledge of Sapelo’s oral history. She and Maurice Bailey were constantly challenging us with questions and comments about what we were finding or not finding at Chocolate. This study is better for their challenges, critiques and suggestions.
References Cited

Adams, William H.

Bishop, Nathaniel H.
1878 Voyage of the Paper Canoe: A Geographical Journey of 2500 Miles From Quebec to the Gulf of Mexico, During the Years 1874-5. Lee and Shepard Publishers, Boston.

Blanchette, Jean-Francois

Carter, Constance

Coulter, E. Merton

Crook, Morgan R., Cornelia Bailey, Norma Harris, and Karen Smith
2003 *Sapelo Voices: Historical Anthropology and the Oral Traditions of Gullah-Geechee Communities on Sapelo Island, Georgia*. State University of West Georgia, Carrollton, Georgia.

Crook, Morgan R.

DePratter, Chester B.

DuVal, H. S.

Floyd, Marmaduke

Glissman, A.H.
Hanson, Lee H., Jr.

Hardy, Meredith

Henry, Vernon J., Jr., and John H. Hoyt
1963 Geologic History and Development of the Pleistocene and Recent Barrier Islands of the Georgia Coast. Manuscript, Department of Geology and Marine Institute, University of Georgia, Athens, Georgia.

Honerkamp, Nicholas and Norma Harris

Hopkins, John Livingston
18[21] *Messalina’s Questions; or, A Vindication of Slavery.* Hargrett Rare Book and Manuscript Library, University of Georgia Libraries, Athens.

Hoyt, John H. and John R. Hails

Juengst, Daniel P. (editor)

Keber, Martha L.

Kidd, Kenneth E. and Martha A Kidd

Larson, Lewis H.
1991 *A Guide to the Archaeology of Sapelo Island, Georgia.* West Georgia College, Carrollton.

Leone, Mark P. and Gladys-Marie Fry

Levy, Isaac

1759b Petition of Isaac Levy to the King’s Excellent Majority in Council, 1759 Dec. 15. Document KRC041. Hargrett Rare Book and Manuscript Library, the University of Georgia Libraries, Athens.

1760 Petition to the King of England from Isaac Levy respecting the Islands of Sapelo, Ossabaw, and St. Catherine’s, 1760. Document KRC043. Hargrett Rare Book and Manuscript Library, the University of Georgia Libraries, Athens.

1767 Petition of Isaac Levy, 1767 Dec. 22, to his majesty [the King of England]. Document KRC046. Hargrett Rare Book and Manuscript Library, the University of Georgia Libraries, Athens.

17??a Case on behalf of Isaac Levy Esquire on his application to his Majesty in council with respect to his right to a moiety of the Islands of Usuba [i.e. Ossabaw] and Sappola [i.e. Sapelo] on the confines of Georgia. Date Uncertain. Document KRC053. Hargrett Rare Book and Manuscript Library, the University of Georgia Libraries, Athens.

17??b [Legal claim pertaining to the cession of] Ussaba [i.e. Ossabaw and] Sappola [i.e. Sapelo] Islands. Date Uncertain. Document KRC040. Hargrett Rare Book and Manuscript Library, the University of Georgia Libraries, Athens.

Lovell, Caroline Couper
1932 *The Golden Isles of Georgia.* Little and Brown, Boston.

McMichael, Alan E.

Moore, Clarence B.
1898 *C. B. Moore Field Notes 14 (1897-1898).* Copy on file at the Antonio J. Waring, Jr. Archaeological Laboratory, University of West Georgia, Carrollton, Georgia.

Noel Hume, Ivor
O’Grady, Patricia D.

Pfeiffer, Michael A.

Samford, Patricia

Schiffer, Michael B

Simmons, Christopher W.

South, Stanley

Stine, Linda F., M. A. Cabak, and M.D. Groover

Sullivan, Buddy
1997 Early Days On the Georgia Tidewater: The Story of McIntosh County and Sapelo. McIntosh County Board of Commissioners, Darien, Georgia. Originally 1991.

Thomas, Brian W.

Thomas, David H.
1993 Historic Indian Period Archaeology of the Georgia Coastal Zone. Georgia Archeological Research Design Paper No. 8, University of Georgia, Athens, Georgia.

Thomas, Kenneth H., Jr.
Thornbury, W.D.

USDA

Williams, Stephen (editor)

White, Stephen W.

Worth, John E.
Appendix A. Letter to Charles Harris from Edward Swarbreck, 12 January 1815.

Savannah 12th January 1815

Mr. Charles Harris

Agreeable to your wish, I present you with a small sample of sugar and molasses that I brought from Sapelo Island, manufactured by Mr. Spalding from my own sugar cane which place I left the 7th Inst. This sugar is not so good as Mr. Spalding's, because it's been ground and boil since the frost, and it's hardly yet drained of its molasses: Thence I subjoin a moderate estimate of the value the quantity I sawd took a minute down, of sugar and molasses in Mr. Spalding's Curing House the produce of an hundred acres of his land this crop.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>130 Casks Sugar</td>
<td>6,000 lb</td>
<td>$20,000</td>
</tr>
<tr>
<td>Nota 75,000 lb</td>
<td></td>
<td>$15,000</td>
</tr>
<tr>
<td>40 Hogs molasses each 100 gal</td>
<td>4,000 gal</td>
<td>$0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$37,600</td>
</tr>
</tbody>
</table>

Mr. Spalding is certainly entitled to great merit by the first Planter in bringing sugar cane to perfection in this country. I mean by his planting
the cane as a crop & manufacturing it into sugar on a large scale on Sapelo Island, I believe his Sugar Works are equal to any in the West Indies from Judges his Sugar Mill is superior, it grinds out 350, to 400 Gallons Cane Juice in One Hour, and that with the small power of four Mules. The Machinery & all the Sugar Works were made by his own People & all the growth & produce of the Island except the Iron parts for the Mill & Copper Boilers, them were made here by his direction under my Inspection, all the Walls of the building are made off Tabby, a composition of lime, sand, and oyster shells, that will last centuries in fact nothing but an Earthquake can destroy the walls or other formidable operations.

This is all the information I can communicate to you relative to Mr. Spalding's Crop of Sugar Molasses this season and his Sugar works.

Sam. Sir

Respectfully yours
Edm. Freeman.
Appendix B. Excerpt from Nathaniel H. Bishop’s (1878) Account of His Visit to Chocolate in 1875.

Mud River opened its wide mouth before me as I left the inlet, but the tide was very low, and Mud River is a sticking-point in the passage of the Florida steamers. It became so dark that I was obliged to get near the shore to make a landing. My attempt was made opposite a negro's house which was on a bluff but the water had receded into the very narrow channel of Mud River, and I was soon stuck fast on a flat. Getting overboard, I sank to my knees in the soft mud. I called for help, and was answered by a tall darky, who, with a double-barrelled gun, left his house and stood in a threatening manner on the shore. I appealed for help, and said I wished to go ashore. "Den cum de best way you can," he answered in a surly manner. "What duz you want 'bout here, any way? What duz you want on Choc'late Plantation, anyhow?"

I explained to this ugly black that I was a northern man, travelling to see the country, and wished to camp near his house for protection, and promised, if he would aid me to land, that I would convince him of my honest purpose by showing him the contents of my canoe, and would prove to him that I was no enemy to the colored man. I told him of the maps, the letters, and the blankets which were in the little canoe now so fast in the mud, and what a loss it would be if some marauder, passing on the next high tide, should steal my boat.

The fellow slowly lowered his gun, which had been held in a threatening position, and said:

"Nobody knows his friends in dese times. I'se had a boat stealed by some white man, and spose you was cumin to steal sumting else. Dese folks on de riber can't be trussed. Dey steals ebryting. Heaps o' bad white men 'bout nowadnys sens de war. Steals a nigger's chickens, boats, and ebryting dey lays hands on. Up at de big house on High Pint (norfen gemmin built him, and den got gusted wid cotton-planting and went home) de white folks goes and steals all de cheers and beds, and ebryting out ob de house. Sens de war all rascals."

It was a wearisome and dangerous job for me to navigate the canoe over the soft, slippery mud to the firm shore, as there were unfathomed places in the flats which might ingulf or entomb me at any step; but the task was completed, and I stood face to face with the now half tranquillized negro. Before removing the mud that hung upon me to the waist in heavy clods, I showed the darky my chart-case, and explained the object of my mission. He was very intelligent, and, after asking a few questions, said to his son:

"Take dis gun to de house;" and then turning to me, continued: "Dis is de sort ob man I'se am. I'se knows how to treat a friend like a white man, and I'se can fight wid my knife or my fist or my gun anybody who 'poses on me. Now I'se knows you is a gemmin I'se won't treat you like a nigger. Gib you best I'se got. Cum to de house."

When inside of the house of this resolute black, every attention was paid to my comfort. The cargo of the paper canoe was piled up in one corner of the room. The wife and children sat before the bright fire and listened to the story of my cruise. I doctored the sick pickaninny of my host, and made the family a pot of strong coffee. This negro could read, but he asked me to address a label he wished to attach to a bag of Sea-Island cotton of one hundred and sixty
pounds' weight, which he had raised, and was to ship by the steamboat Lizzie Baker to a mercantile house in Savannah.

As I rested upon my blankets, which were spread upon the floor of the only comfortable room in the house, at intervals during the night the large form of the black stole softly in and bent over me to see if I were well covered up, and he as noiselessly piled live-oak sticks upon the dying embers to dry up the dampness which rose from the river.

He brought me a basin of cold water in the morning, and not possessing a towel clean enough for a white man, he insisted that I should use his wife's newly starched calico apron to wipe my face and hands upon. When I offered him money for the night's accommodation and the excellent oyster breakfast that his wife prepared for me, he said: "You may gib my wife whateber pleases you for her cooking, but nuffin for de food or de lodgings. I'se no nigger, ef I is a cullud man."
Appendix C, UWG Chocolate Ceramic Inventory.
Appendix D. UTC Field Specimen Numbers and Unit Locations.

<table>
<thead>
<tr>
<th>FS</th>
<th>Location</th>
<th>FS</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Site wide, surface</td>
<td>46</td>
<td>960N 960E</td>
</tr>
<tr>
<td>2</td>
<td>1000N 980E</td>
<td>47</td>
<td>1040N 960E</td>
</tr>
<tr>
<td>3</td>
<td>1020N 1000E</td>
<td>48</td>
<td>1040N 960E</td>
</tr>
<tr>
<td>4</td>
<td>1000N 940E</td>
<td>49</td>
<td>980N 960E</td>
</tr>
<tr>
<td>5</td>
<td>1040N 1000E</td>
<td>50</td>
<td>960N 940E</td>
</tr>
<tr>
<td>6</td>
<td>1000N 980E</td>
<td>51</td>
<td>960N 940E</td>
</tr>
<tr>
<td>7</td>
<td>1060N 1000E</td>
<td>52</td>
<td>980N 940E</td>
</tr>
<tr>
<td>8</td>
<td>1080N 1000E</td>
<td>53</td>
<td>980N 920E</td>
</tr>
<tr>
<td>9</td>
<td>1000N 920E</td>
<td>54</td>
<td>920N 960E</td>
</tr>
<tr>
<td>10</td>
<td>1000N 960E</td>
<td>55</td>
<td>1000N 1040E</td>
</tr>
<tr>
<td>11</td>
<td>1000N 1000E</td>
<td>56</td>
<td>1000N 1060E</td>
</tr>
<tr>
<td>12</td>
<td>980N 1020E</td>
<td>57</td>
<td>900N 980E</td>
</tr>
<tr>
<td>13</td>
<td>1000N 1020E</td>
<td>58</td>
<td>920N 980E</td>
</tr>
<tr>
<td>14</td>
<td>980N 1000E</td>
<td>59</td>
<td>1000N 1080E</td>
</tr>
<tr>
<td>15</td>
<td>960N 1020E</td>
<td>60</td>
<td>920N 980E</td>
</tr>
<tr>
<td>16</td>
<td>940N 1020E</td>
<td>61</td>
<td>880N 980E</td>
</tr>
<tr>
<td>17</td>
<td>960N 1040E</td>
<td>62</td>
<td>1040N 980E</td>
</tr>
<tr>
<td>18</td>
<td>1020N 1020E</td>
<td>63</td>
<td>860N 980E</td>
</tr>
<tr>
<td>19</td>
<td>1080N 1020E</td>
<td>64</td>
<td>880N 960E</td>
</tr>
<tr>
<td>20</td>
<td>1100N 1000E</td>
<td>65</td>
<td>880N 1000E</td>
</tr>
<tr>
<td>21</td>
<td>960N 1060E</td>
<td>66</td>
<td>840N 980E</td>
</tr>
<tr>
<td>22</td>
<td>960N 1080E</td>
<td>67</td>
<td>920N 1000E</td>
</tr>
<tr>
<td>23</td>
<td>1060N 1020E</td>
<td>68</td>
<td>900N 1000E</td>
</tr>
<tr>
<td>24</td>
<td>1040N 1020E</td>
<td>69</td>
<td>900N 960E</td>
</tr>
<tr>
<td>25</td>
<td>960N 1100E</td>
<td>70</td>
<td>900N 1040E</td>
</tr>
<tr>
<td>26</td>
<td>840N 1020E</td>
<td>71</td>
<td>820N 980E</td>
</tr>
<tr>
<td>27</td>
<td>820N 1020E</td>
<td>72</td>
<td>880N 1040E</td>
</tr>
<tr>
<td>28</td>
<td>800N 1020E</td>
<td>73</td>
<td>860N 1000E</td>
</tr>
<tr>
<td>29</td>
<td>860N 1020E (5 cm)</td>
<td>74</td>
<td>980N 1060E</td>
</tr>
<tr>
<td>30</td>
<td>1020N 980E</td>
<td>75</td>
<td>980N 1080E</td>
</tr>
<tr>
<td>31</td>
<td>1060N 980E</td>
<td>76</td>
<td>980N 1100E</td>
</tr>
<tr>
<td>32</td>
<td>880N 1020E</td>
<td>77</td>
<td>840N 1000E</td>
</tr>
<tr>
<td>33</td>
<td>1080N 980E</td>
<td>78</td>
<td>980N 1040E</td>
</tr>
<tr>
<td>34</td>
<td>920N 1020E</td>
<td>79</td>
<td>800N 980E</td>
</tr>
<tr>
<td>35</td>
<td>900N 1020E</td>
<td>80</td>
<td>820N 1000E</td>
</tr>
<tr>
<td>36</td>
<td>940N 1100E</td>
<td>81</td>
<td>920N 1040E</td>
</tr>
<tr>
<td>37</td>
<td>940N 1000E</td>
<td>82</td>
<td>800N 1000E</td>
</tr>
<tr>
<td>38</td>
<td>940N 1080E</td>
<td>83</td>
<td>920N 1060E</td>
</tr>
<tr>
<td>39</td>
<td>940 1060E</td>
<td>84</td>
<td>920N 1080E</td>
</tr>
<tr>
<td>40</td>
<td>980N 980E</td>
<td>85</td>
<td>920N 1100E</td>
</tr>
<tr>
<td>41</td>
<td>940N 1040E</td>
<td>86</td>
<td>820N 1060E</td>
</tr>
<tr>
<td>42</td>
<td>980N 980E</td>
<td>87</td>
<td>820N 1060E</td>
</tr>
<tr>
<td>43</td>
<td>960N 980E</td>
<td>88</td>
<td>880N 1060E</td>
</tr>
<tr>
<td>44</td>
<td>1020N 960E</td>
<td>89</td>
<td>900N 1060E</td>
</tr>
<tr>
<td>45</td>
<td>960N 1000E</td>
<td>90</td>
<td>860N 1060E</td>
</tr>
<tr>
<td>FS</td>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>900N 1080E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>840N 1060E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>840N 1040E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>820N 1040E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>940N 980E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>800N 1040E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>960N 920E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>780N 1020E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>960N 900E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>860N 1040E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>1020N 1060E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>1040N 1060E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>980N 900E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>800N 1060E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>800N 1060E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>1020N 1080E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>1040N 1040E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>800N 1060E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>800N 1060E – Structure H surface collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>800N 1060E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>900N 940E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>920N 920E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>940N 920E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>860N 1080E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>920N 900E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>920N 940E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>940N 900E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>1000N 1100E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1020N 940E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>1060N 1040E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>940N 880E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>1020N 940E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>1080N 1040E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>1080N 1040E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>1040N 940E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>1100N 1020E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>900N 920E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>900N 920E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>880N 940E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>860N 960E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Multiple FS numbers in a unit result from the presence of features.