MOMENTUM

The Big Idea
Momentum is conserved for all collisions as long as external forces don't interfere.

Have you ever wondered how a tae kwon do expert can break a stack of cement bricks with the blow of a bare hand? Or why falling on a wooden floor hurts less than falling on a cement floor? Or why follow-through is important in golf, baseball, and boxing? To understand these things, you need to recall the concept of inertia introduced and developed when we discussed Newton’s laws of motion. Inertia was discussed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with the concept of inertia in motion—momentum.

discover!

How Does a Collision Affect the Motion of Marbles?
1. Place five marbles, all identical in size and shape, in the center groove of a ruler. Launch a sixth marble toward the five stationary marbles. Note any changes in the marbles' motion.
2. Now launch two marbles at four stationary marbles. Then launch three marbles at three stationary marbles, and so on. Note any changes in the marbles' motion.
3. Remove all but two marbles from the groove. Roll these two marbles at each other with equal speeds. Note any changes in the marbles' motion.

Analyze and Conclude
1. Observing How did the approximate speed of the marbles before each collision compare to after each collision?
2. Drawing Conclusions What factors determine how the speed of the marbles changes in a collision?
3. Predicting What do you think would happen if three marbles rolling to the right and two marbles rolling to the left with the same speed were to collide?
8.1 Momentum

We know that it's harder to stop a large truck than a small car when both are moving at the same speed. We say the truck has more momentum than the car. By momentum, we mean *inertia in motion*. More specifically, momentum is the mass of an object multiplied by its velocity.

\[\text{momentum} = \text{mass} \times \text{velocity} \]

or, in abbreviated notation,

\[\text{momentum} = \text{mv} \]

When direction is not an important factor, we can say

\[\text{momentum} = \text{mass} \times \text{speed} \]

which we still abbreviate \(\text{mv} \).

A moving object can have a large momentum if it has a large mass, a high speed, or both. A moving truck has more momentum than a car moving at the same speed because the truck has more mass. But a fast car can have more momentum than a slow truck. And a truck at rest has no momentum at all. Figure 8.1 compares the momentum of a truck to that of a roller skate.

CONCEPT: What factors affect an object's momentum?

CHECK:

8.2 Impulse Changes Momentum

If the momentum of an object changes, either the mass or the velocity or both change. If the mass remains unchanged, as is most often the case, then the velocity changes and acceleration occurs. What produces acceleration? We know the answer is *force*. The greater the force acting on an object, the greater its change in velocity, and hence, the greater its change in momentum.
Impulse The change in momentum depends on the force that acts and the length of time it acts. As Figure 8.2 shows, apply a brief force to a stalled automobile, and you produce a change in its momentum. Apply the same force over an extended period of time and you produce a greater change in the automobile's momentum. A force sustained for a long time produces more change in momentum than does the same force applied briefly. So both force and time are important in changing an object's momentum.

FIGURE 8.2
When you push with the same force for twice the time, you impart twice the impulse and produce twice the change in momentum.

The quantity force \(\times \) time interval is called impulse. In shorthand notation,

\[
\text{impulse} = Ft
\]

The greater the impulse exerted on something, the greater will be the change in momentum. The exact relationship is

\[
\text{impulse} = \text{change in momentum} = \Delta (mv)
\]

or

\[
Ft = \Delta (mv)
\]

The impulse–momentum relationship helps us to analyze a variety of situations where the momentum changes. Consider the familiar examples of impulse in the following cases of increasing and decreasing momentum.

Increasing Momentum To increase the momentum of an object, it makes sense to apply the greatest force possible for as long as possible. A golfer teeing off and a baseball player trying for a home run do both of these things when they swing as hard as possible and follow through with their swing.

The forces involved in impulses usually vary from instant to instant. Look at Figure 8.3. A golf club that strikes a golf ball exerts zero force on the ball until it comes in contact with it; then the force increases rapidly as the ball becomes distorted. The force then diminishes as the ball comes up to speed and returns to its original shape. So when we speak of such forces in this chapter, we mean the average force.
Decreasing Momentum If you were in a car that was out of control and had to choose between hitting a haystack, as in Figure 8.4 or a concrete wall as in Figure 8.5, you wouldn’t have to call on your knowledge of physics to make up your mind. Common sense tells you to choose the haystack. But knowing the physics helps you to understand why hitting a soft object is entirely different from hitting a hard one.

In the case of hitting either the wall or the haystack and coming to a stop, your momentum is decreased by the same impulse. The same impulse does not mean the same amount of force or the same amount of time; rather it means the same product of force and time. By hitting the haystack instead of the wall, you extend the contact time—the time during which your momentum is brought to zero. A longer contact time reduces the force and decreases the resulting deceleration. For example, if the time is extended 100 times, the force of impact is reduced 100 times. Whenever we wish the force to be small, we extend the time.

We know that a padded dashboard in a car is safer than a rigid metal one and that airbags save lives. You also know that to catch a fast-moving ball safely with your bare hand—you extend your hand forward so there’s plenty of room for it to move backward after making contact with the ball. When you extend the time of contact, you reduce the force of the catch.
Bungee Jumping

The impulse–momentum relationship is put to a thrilling test during bungee jumping. Be glad the rubber cord stretches when the jumper’s fall is brought to a halt, because the cord has to apply an impulse equal to the jumper’s momentum in order to stop the jumper—hopefully above ground level.

Note how $Ft = \Delta (mv)$ applies here. The momentum, mv, we wish to change is the amount gained before the cord begins stretching. Ft is the impulse the cord supplies to reduce the momentum to zero. Because the rubber cord stretches for a long time, a large time interval t ensures that a small average force F acts on the jumper. Elastic cords typically stretch to twice their original length during the fall.

When jumping from an elevated position down to the ground, you should bend your knees when your feet make contact with the ground. By doing so you extend the time during which your momentum decreases by 10 to 20 times that of a stiff-legged, abrupt landing. The resulting force on your bones is reduced by 10 to 20 times. A wrestler thrown to the floor tries to extend his time of hitting the mat by relaxing his muscles and spreading the impulse into a series of smaller ones as his foot, knee, hip, ribs, and shoulder successively hit the mat. Of course, falling on a mat is preferable to falling on a solid floor because the mat also increases the stopping time.

When a boxer gets punched, the impulse provided by the boxer’s jaw must counteract the momentum of the punch. As Figure 8.6a shows, when the boxer moves away from the punch, he increases the time of contact and reduces the force. When the boxer moves toward the punch, as in Figure 8.6b, the time of contact is reduced and the force is increased.

If the boxer in Figure 8.6 is able to make the contact time five times longer by “riding” with the punch, how much will the force of the punch impact be reduced?

Answer: 8.2.2

FIGURE 8.6

The impulse provided by a boxer’s jaw counteracts the momentum of the punch. a. The boxer moves away from the punch. b. The boxer moves toward the punch. Ouch!
We know a glass dish is more likely to survive if it is dropped on a carpet rather than a sidewalk because the carpet has more “give” than the sidewalk. Ask why a surface with more give makes for a safer fall and you will get a puzzled response from most people. They may simply say, “Because it gives more.” However, your question is, “Why is a surface with more give safer for the dish?” In this case, a common explanation isn’t enough. A deeper explanation is needed.

To bring the dish or its fragments to rest, the carpet or the sidewalk must provide an impulse, which you know involves two variables—force and time. Since time is longer hitting the carpet than hitting the sidewalk, a smaller force results. The shorter time hitting the sidewalk results in a greater stopping force. The safety net used by circus acrobats is a good example of how to achieve the impulse needed for a safe landing. The safety net reduces the stopping force on a fallen acrobat by substantially increasing the time interval of the contact.

Sometimes a difference in time is important even if you can’t notice the give in a surface. For example, a wooden floor and a concrete floor may both seem rigid, but the wooden floor can have enough give to make quite a difference in the forces that these two surfaces exert.

CONCEPT: What factors affect how much an object’s momentum changes?

8.3 Bouncing

If a flower pot falls from a shelf onto your head, you may be in trouble. If it bounces from your head, you may be in more serious trouble. Why? Because impulses are greater when an object bounces.

The impulse required to bring an object to a stop and then to “throw it back again” is greater than the impulse required merely to bring the object to a stop. Suppose, for example, that you catch the falling pot with your hands. You provide an impulse to reduce its momentum to zero. If you throw the pot upward again, you have to provide additional impulse. It takes a greater impulse to catch the pot and throw it back up than merely to catch it. This increased amount of impulse is supplied by your head if the pot bounces from it. The karate expert in Figure 8.7 strikes the bricks in such a way that her hand is made to bounce back, yielding as much as twice the impulse to the bricks.

FIGURE 8.7 Cassy imparts a large impulse to the bricks in a short time and produces considerable force.
The curved blades of the Pelton Wheel cause water to bounce and make a U-turn, producing a large impulse that turns the wheel.

The fact that impulses are greater when bouncing takes place was used with great success during the California Gold Rush. The waterwheels used in gold mining operations were not very effective. A man named Lester A. Pelton saw that the problem had to do with the flat paddles on the waterwheel. He designed the curve-shaped paddle that is shown in Figure 8.8. This paddle caused the incoming water to make a U-turn upon impact with the paddle. Because the water “bounced,” the impulse exerted on the waterwheel was increased. Pelton patented his idea and probably made more money from his invention, the Pelton Wheel, than any of the gold miners earned. Physics can indeed make you rich!

CONCEPT CHECK: How does the impulse of a bounce compare to stopping only?

8.4 Conservation of Momentum

From Newton’s second law you know that to accelerate an object, a net force must be applied to it. This chapter says much the same thing, but in different language. If you wish to change the momentum of an object, exert an impulse on it.

In either case, the force or impulse must be exerted on the object by something outside the object. Internal forces won’t work. For example, the molecular forces within a basketball have no effect on the momentum of the basketball, just as a push against the dashboard of a car you’re sitting in does not affect the momentum of the car. Molecular forces within the basketball and a push on the dashboard are internal forces. They come in balanced pairs that cancel within the object. To change the momentum of the basketball or the car, an outside push or pull is required. If no outside force is present, no change in momentum is possible.
Consider the cannon being fired in Figure 8.10. The force on the cannonball inside the cannon barrel is equal and opposite to the force causing the cannon to recoil. Recall Newton’s third law about action and reaction forces. These forces are internal to the system comprising the cannon and the cannonball, so they don’t change the momentum of the cannon–cannonball system. Before the firing, the system is at rest and the momentum is zero. After the firing the net momentum, or total momentum, is still zero. Net momentum is neither gained nor lost. Let’s consider the effects of internal and external forces carefully.

FIGURE 8.10
The momentum before firing is zero. After firing, the net momentum is still zero because the momentum of the cannon is equal and opposite to the momentum of the cannonball.

Momentum, like the quantities velocity and force, has both direction and magnitude. It is a vector quantity. Like velocity and force, momentum can be canceled. So, although the cannonball in the preceding example gains momentum when fired and the recoiling cannon gains momentum in the opposite direction, the cannon–cannonball system gains none. The momenta (plural form of momentum) of the cannonball and the cannon are equal in magnitude and opposite in direction. Therefore, these momenta cancel each other out for the system as a whole. No external force acted on the system before or during firing. Since no net force acts on the system, there is no net impulse on the system and there is no net change in the momentum.

In every case, the momentum of a system cannot change unless it is acted on by external forces. A system will have the same momentum before some internal interaction as it has after the interaction occurs. When momentum, or any quantity in physics, does not change, we say it is conserved. The law of conservation of momentum describes the momentum of a system. The law of conservation of momentum states that, in the absence of an external force, the momentum of a system remains unchanged. If a system undergoes changes wherein all forces are internal as for example in atomic nuclei undergoing radioactive decay, cars colliding, or stars exploding, the net momentum of the system before and after the event is the same.

CONCEPT CHECK: What does the law of conservation of momentum state?
8.5 Collisions

The collision of objects clearly shows the conservation of momentum. Whenever objects collide in the absence of external forces, the net momentum of both objects before the collision equals the net momentum of both objects after the collision.

\[
\text{net momentum}_{\text{before collision}} = \text{net momentum}_{\text{after collision}}
\]

Elastic Collisions When a moving billiard ball collides head-on with a ball at rest, the first ball comes to rest and the second ball moves away with a velocity equal to the initial velocity of the first ball. We see that momentum is transferred from the first ball to the second ball. When objects collide without being permanently deformed and without generating heat, the collision is said to be an elastic collision. Colliding objects bounce perfectly in perfect elastic collisions, as shown in Figure 8.11. Note that the sum of the momentum vectors is the same before and after each collision.
Inelastic Collisions A collision in which the colliding objects become distorted and generate heat during the collision is an **inelastic collision**. Momentum conservation holds true even in inelastic collisions. Whenever colliding objects become tangled or couple together, a totally inelastic collision occurs. The freight train cars in Figure 8.12 provide an example. Suppose the freight cars are of equal mass m, and that one car moves at 4 m/s toward the other car that is at rest. Can you predict the velocity of the coupled cars after impact? From the conservation of momentum,

$$\text{net momentum before collision} = \text{net momentum after collision}$$

or, in equation form,

$$(\text{net } mv)_{\text{before}} = (\text{net } mv)_{\text{after}}$$

$$(m)(4 \text{ m/s}) + (m)(0 \text{ m/s}) = (2m)(v_{\text{after}})$$

Since twice as much mass is moving after the collision, can you see that the velocity, v_{after}, must be one half of 4 m/s? Solving for the velocity after the collision, we find $v_{\text{after}} = 2 \text{ m/s}$ in the same direction as the velocity before the collision, v_{before}. The initial momentum is shared by both cars without loss or gain. Momentum is conserved.

FIGURE 8.12
In an inelastic collision between two freight cars, the momentum of the freight car on the left is shared with the freight car on the right.

Most collisions usually involve some external force. Billiard balls do not continue indefinitely with the momentum imparted to them. The moving balls encounter friction with the table and the air. These external forces are usually negligible during the collision, so the net momentum does not change during collision. The net momentum of two colliding trucks is the same before and just after the collision. As the combined wreck slides along the pavement, friction provides an impulse to decrease its momentum. Similarly, a pair of space vehicles docking in orbit have the same net momentum just before and just after contact. Since there is no air resistance in space, the combined momentum of the space vehicles after docking is then changed only by gravity.
Perfectly elastic collisions are not common in the everyday world. We find in practice that some heat is generated during collisions. Drop a ball and after it bounces from the floor, both the ball and the floor are a bit warmer. Even a dropped superball will not bounce to its initial height. At the microscopic level, however, perfectly elastic collisions are commonplace. For example, electrically charged particles bounce off one another without generating heat; they don’t even touch in the classic sense of the word. Later chapters will show that the concept of touching needs to be considered differently at the atomic level.

CONCEPT CHECK

How does conservation of momentum apply to collisions?

think!

Suppose one of the gliders in Figure 8.13 is loaded so it has three times the mass of the other glider. The loaded glider is initially at rest. The unloaded glider collides with the loaded glider and the two gliders stick together. Describe the motion of the gliders after the collision. **Answer: 8.5**
Consider a 6-kg fish that swims toward and swallows a 2-kg fish that is at rest. If the larger fish swims at 1 m/s, what is its velocity immediately after lunch?

Momentum is conserved from the instant before lunch until the instant after (in so brief an interval, water resistance does not have time to change the momentum), so we can write

\[
\text{net momentum before lunch} = \text{net momentum after lunch}
\]
\[
(6 \text{ kg})(1 \text{ m/s}) + (2 \text{ kg})(0 \text{ m/s}) = (6 \text{ kg} + 2 \text{ kg})(v_{\text{after}})
\]
\[
6 \text{ kg} \cdot \text{m/s} = (8 \text{ kg})(v_{\text{after}})
\]
\[
v_{\text{after}} = \frac{6 \text{ kg} \cdot \text{m/s}}{8 \text{ kg}} = \frac{3}{4} \text{ m/s}
\]

We see that the small fish has no momentum before lunch because its velocity is zero. Using simple algebra we see that after lunch the combined mass of the two-fish system is 8 kg and its speed is \(\frac{3}{4}\) m/s in the same direction as the large fish’s direction before lunch.

Suppose the small fish is not at rest but is swimming toward the large fish at 2 m/s. What is the velocity of the larger fish immediately after lunch?

If we consider the direction of the large fish as positive, then the velocity of the small fish is -2 m/s.

\[
(\text{net} \text{mv})_{\text{before}} = (\text{net} \text{mv})_{\text{after}}
\]
\[
(6 \text{ kg})(1 \text{ m/s}) + (2 \text{ kg})(-2 \text{ m/s}) = (6 \text{ kg} + 2 \text{ kg})(v_{\text{after}})
\]
\[
6 \text{ kg} \cdot \text{m/s} + (-4 \text{ kg} \cdot \text{m/s}) = (8 \text{ kg})(v_{\text{after}})
\]
\[
\frac{2 \text{ kg} \cdot \text{m/s}}{8 \text{ kg}} = v_{\text{after}} = \frac{1}{4} \text{ m/s}
\]

The negative momentum of the small fish is very effective in slowing the large fish. If the small fish were swimming at -3 m/s, then both fish would have equal and opposite momenta. Zero momentum before lunch would equal zero momentum after lunch, and both fish would come to a halt.

More interestingly, suppose the small fish swims at -4 m/s.

\[
(\text{net} \text{mv})_{\text{before}} = (\text{net} \text{mv})_{\text{after}}
\]
\[
(6 \text{ kg})(1 \text{ m/s}) + (2 \text{ kg})(-4 \text{ m/s}) = (6 \text{ kg} + 2 \text{ kg})(v_{\text{after}})
\]
\[
6 \text{ kg} \cdot \text{m/s} + (-8 \text{ kg} \cdot \text{m/s}) = (8 \text{ kg})(v_{\text{after}})
\]
\[
\frac{-2 \text{ kg} \cdot \text{m/s}}{8 \text{ kg}} = v_{\text{after}} = -\frac{1}{4} \text{ m/s}
\]

The minus sign tells us that after lunch the two-fish system moves in a direction opposite to the large fish’s direction before lunch.

8.6 Momentum Vectors

Momentum is conserved even when interacting objects don’t move along the same straight line. To analyze momentum in any direction, we use the vector techniques we’ve previously learned. The vector sum of the momenta is the same before and after a collision. We’ll look at momentum conservation involving angles by briefly considering the three following examples.
FIGURE 8.14
Momentum is a vector quantity. The momentum of the wreck is equal to the vector sum of the momenta of car A and car B before the collision.

Notice in Figure 8.14 that the momentum of car A is directed due east and that of car B is directed due north. If their momenta are equal in magnitude, after colliding their combined momentum will be in a northeast direction with a magnitude $\sqrt{2}$ times the momentum either vehicle had before the collision (just as the diagonal of a square is $\sqrt{2}$ times the length of a side).

FIGURE 8.15
When the firecracker bursts, the vector sum of the momenta of its fragments add up to the firecracker’s momentum just before bursting.

Figure 8.15 shows a falling firecracker that explodes into two pieces. The momenta of the fragments combine by vector rules to equal the original momentum of the falling firecracker.

Figure 8.16 shows tracks made by subatomic particles in a bubble chamber. The mass of these particles can be computed by applying both the conservation of momentum and conservation of energy laws—the conservation of energy law will be discussed in the next chapter. The conservation laws are extremely useful to experimenters in the atomic and subatomic realms. A very important feature of their usefulness is that forces do not show up in the equations. Forces in collisions, however complicated, are not a concern.

Conservation of momentum and, as the next chapter will discuss, conservation of energy are the two most powerful tools of mechanics. Their application yields detailed information that ranges from understanding the interactions of subatomic particles to entire galaxies.

CONCEPT: What is true about the vector sum of momenta in a collision?
Concept Summary

- A moving object can have a large momentum if it has a large mass, a high speed, or both.
- The change in momentum depends on the force that acts and the length of time it acts.
- The impulse required to bring an object to a stop and then to “throw it back again” is greater than the impulse required merely to bring the object to a stop.
- The law of conservation of momentum states that in the absence of an external force, the momentum of a system remains unchanged.
- Whenever objects collide in the absence of external forces, the net momentum of both objects before collision equals the net momentum of both objects after collision.
- The vector sum of the momenta is the same before and after a collision.

Key Terms

- momentum (p. 125)
- impulse (p. 126)
- law of conservation of momentum (p. 131)
- elastic collision (p. 132)
- inelastic collision (p. 133)

think! Answers

8.1 The roller skate and truck can have the same momentum if the speed of the roller skate is much greater than the speed of the truck. How much greater? As many times greater as the truck’s mass is greater than the roller skate’s mass. Get it? For example, a 1000-kg truck backing out of a driveway at 0.01 m/s has the same momentum as a 1-kg skate going 10 m/s. Both have momentum = 10 kg m/s.

8.2.1 No. The impulse would be the same for either surface because the same momentum change occurs for each. It is the force that is less for the impulse on the carpet because of the greater time of momentum change.

8.2.2 Since the time of impact increases five times, the force of impact will be reduced five times.

8.4 Yes, because no acceleration means that no change occurs in velocity or in momentum (mass \times \text{velocity}). Another line of reasoning is simply that no net force means there is no net impulse and thus no change in momentum.

8.5 The mass of the stuck-together gliders is four times that of the unloaded glider. Thus, the postcollision velocity of the stuck-together gliders is one-fourth of the unloaded glider’s velocity before collision. This velocity is in the same direction as before, since the direction as well as the amount of momentum is conserved.
Check Concepts

Section 8.1
1. Distinguish between mass and momentum. Which is inertia and which is inertia in motion?

2. a. Which has the greater mass, a heavy truck at rest or a rolling skateboard?
 b. Which has greater momentum?

3. Distinguish between force and impulse.

Section 8.2
4. Distinguish between impact and impulse. Which designates a force and which is force multiplied by time?

5. When the force of impact on an object is extended in time, does the impulse increase or decrease?

6. Distinguish between impulse and momentum. Which is force \(\times \) time and which is inertia in motion?

7. Does impulse equal momentum, or a change in momentum?

8. For a constant force, suppose the duration of impact on an object is doubled.
 a. How much is the impulse increased?
 b. How much is the resulting change in momentum increased?

9. In a car crash, why is it advantageous for an occupant to extend the time during which the collision takes place?

10. If the time of impact in a collision is extended by four times, how much does the force of impact change?

11. Why is it advantageous for a boxer to ride with the punch? Why should he avoid moving into an oncoming punch?

Section 8.3
12. Visualize yourself on a skateboard.
 a. When you throw a ball, do you experience an impulse?
 b. Do you experience an impulse when you catch a ball of the same speed?
 c. Do you experience an impulse when you catch it and then throw it out again?
 d. Which impulse is greatest?

13. Why is more impulse delivered during a collision when bouncing occurs than during one when it doesn’t?

14. Why is the Pelton Wheel an improvement over paddle wheels with flat blades?

Section 8.4
15. In terms of momentum conservation, why does a cannon recoil when fired?

16. What does it mean to say that momentum is conserved?
Section 8.5

17. Distinguish between an elastic and an inelastic collision.

18. Imagine that you are hovering next to the space shuttle in an Earth orbit. Your buddy of equal mass, who is moving at 4 km/h with respect to the shuttle, bumps into you. If he holds onto you, how fast do you both move with respect to the ship?

Section 8.6

19. Is momentum conserved for colliding objects that are moving at angles to one another? Explain.

Think and Rank

Rank each of the following sets of scenarios in order of the quantity or property involved. List them from left to right. If scenarios have equal rankings, then separate them with an equal sign. (e.g., A = B)

20. The balls have different masses and speeds.

<table>
<thead>
<tr>
<th></th>
<th>Mass (kg)</th>
<th>Speed (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.0</td>
<td>9.0</td>
</tr>
<tr>
<td>B</td>
<td>1.2</td>
<td>8.5</td>
</tr>
<tr>
<td>C</td>
<td>0.8</td>
<td>12.0</td>
</tr>
<tr>
<td>D</td>
<td>5.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Rank the following from greatest to least.

a. momentum
b. the impulse needed to stop them

21. Below are before-and-after pictures of a car’s speed. The mass of the car doesn’t change.

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10 m/s</td>
<td>20 m/s</td>
</tr>
<tr>
<td>B</td>
<td>20 m/s</td>
<td>15 m/s</td>
</tr>
<tr>
<td>C</td>
<td>0 m/s</td>
<td>10 m/s</td>
</tr>
<tr>
<td>D</td>
<td>15 m/s</td>
<td>10 m/s</td>
</tr>
</tbody>
</table>

Rank the following from greatest to least.

a. the magnitude of momentum change
b. the magnitude of the impulse producing the momentum change

22. Jogging Jake runs along a train flatcar that moves at the velocities shown. In each case, Jake’s velocity is given relative to the car.

<table>
<thead>
<tr>
<th></th>
<th>Jake's Velocity (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4 m/s</td>
</tr>
<tr>
<td>B</td>
<td>6 m/s</td>
</tr>
<tr>
<td>C</td>
<td>4 m/s</td>
</tr>
<tr>
<td>D</td>
<td>6 m/s</td>
</tr>
</tbody>
</table>

Rank the following from greatest to least.

a. the magnitude of Jake’s momentum relative to the car
b. Jake’s momentum to the right relative to an observer at rest on the ground
23. Rick pushes crates starting at rest across a floor for 3 seconds with a net force as shown.

For each crate, rank the following from greatest to least.

a. change in momentum
b. final speed
c. momentum in 3 seconds

28. A lunar vehicle is tested on Earth at a speed of 10 km/h. When it travels as fast on the moon, is its momentum more, less, or the same?

29. When you ride a bicycle at full speed and the bike stops suddenly, why do you have to push hard on the handlebars to keep from flying forward?

30. Can Andrew produce a net impulse on an automobile by sitting inside and pushing on the dashboard? Can the internal forces within a soccer ball produce an impulse on the soccer ball that will change its momentum?

31. Brian tries to jump from his canoe to the dock. He lands in the water, delighting his companions. What’s your explanation for his mishap?

32. Jason throws a ball horizontally while standing on roller skates. He rolls backward with a momentum that matches that of the ball. Will he end up rolling backward if he goes through the motions of throwing the ball, but does not let go of it? Explain.

33. The example in the previous question can be explained in terms of momentum conservation and in terms of Newton’s third law. Assuming you’ve answered it in terms of momentum conservation, answer it also in terms of Newton’s third law (or vice versa if you answered already via Newton’s third law).

Think and Explain

For answers to Think and Explanes and Think and Solves, you may express momentum with the symbol \(p \). Then \(p = mv \).
34. In the previous chapter, rocket propulsion was explained in terms of Newton’s third law. That is, the force that propels a rocket is from the exhaust gases pushing against the rocket, the reaction to the force the rocket exerts on the exhaust gases. Explain rocket propulsion in terms of momentum conservation.

35. In terms of impulse and momentum, why are air bags in automobiles a good idea?

36. Why do gymnasts use floor mats that are very thick?

37. When jumping from a significant height, why is it advantageous to land with your knees slightly bent?

38. In terms of impulse and momentum, why are nylon ropes, which stretch considerably under tension, favored by mountain climbers?

39. Would it be a dangerous mistake for a bungee jumper to use a steel cable rather than an elastic cord?

40. When catching a foul ball at a baseball game, why is it important to extend your bare hands upward so they can move downward as the ball is being caught?

41. Why would it be a poor idea to have the back of your hand up against the outfield wall when you catch a long fly ball?

42. Many years ago, automobiles were manufactured to be as rigid as possible. Today’s autos are designed to crumple upon impact. Why?

43. Why is it difficult for a firefighter to hold a hose that ejects large amounts of water at high speed?

44. You can’t throw a raw egg against a wall without breaking the shell, but you can throw it at the same speed into a sagging sheet without breaking it. Explain.

45. Why can Muhammad exert a greater punching force with his bare fist than he can while wearing a boxing glove?

46. Why do 6-ounce boxing gloves hit harder than 16-ounce gloves?

47. Suppose you roll a bowling ball into a pillow and the ball stops. Now suppose you roll it against a spring and it bounces back with an equal and opposite momentum.
 a. Which object exerts a greater impulse, the pillow or the spring?
 b. If the time it takes the pillow to stop the ball is the same as the time of contact of the ball with the spring, how do the average forces exerted on the ball compare?
48. If you topple from your treehouse, you’ll continuously gain momentum as you fall to the ground below. Doesn’t this violate the law of conservation of momentum? Defend your answer.

49. If a fully loaded shopping cart and an empty one traveling at the same speed have a head-on collision, which cart will experience the greater force of impact? The greater impulse? The greater change in momentum? The greater acceleration?

50. A bug and the windshield of a fast-moving car collide. Indicate whether each of the following statements is true or false.
 a. The forces of impact on the bug and on the car are the same size.
 b. The impulses on the bug and on the car are the same size.
 c. The changes in speed of the bug and of the car are the same.
 d. The changes in momentum of the bug and of the car are the same size.

51. What difference in recoil would you expect in firing a solid ball versus firing a hollow ball from the same cannon? Explain.

52. A group of playful astronauts, each with a bag full of balls, form a circle as they free-fall in space. Describe what happens when they begin tossing balls simultaneously to one another.

53. A proton from an accelerator strikes an atom. An electron is observed flying forward in the same direction the proton was moving and at a speed much greater than the speed of the proton. What conclusion can you draw about the relative mass of a proton and an electron?

Think and Solve

54. Using units, show that kg·m/s is equivalent to N·s.

55. A 1000-kg car moving at 20 m/s slams into a building and comes to a halt. Which of the following questions can be answered using the given information, and which one cannot be answered? Explain.
 a. What impulse acts on the car?
 b. What is the force of impact on the car?

56. A car with a mass of 1000 kg moves at 20 m/s. What braking force is needed to bring the car to a halt in 10 s?

57. A 2-kg blob of putty moving at 3 m/s slams into a 2-kg blob of putty at rest.
 a. Calculate the speed of the two stuck-together blobs of putty immediately after colliding.
 b. Calculate the speed of the two blobs if the one at rest was 4 kg.

58. A 1-kg dart moving horizontally at 10 m/s strikes and sticks to a wood block of mass 9 kg, which slides across a friction-free level surface. What is the speed of the block and the dart after the collision?
59. Assume an 8-kg bowling ball moving at 2 m/s bounces off a spring at the same speed that it had before bouncing.
 a. What is its momentum of recoil?
 b. What is its change in momentum?
 (Hint: What is the change in temperature when something goes from 1° to −1°?)
 c. If the interaction with the spring occurs in 0.5 s, calculate the average force the spring exerts on it.

60. Brakes are applied in bringing a 1200-kg car moving at 25 m/s to rest in 20.0 s. Show that the amount of braking force is 1500 N.

61. A 20.0-kg mass moving at a speed of 3.0 m/s is stopped by a constant force of 15.0 N. Show that the stopping time required is 4.0 s.

62. A 1-kg ostrich egg is thrown at 2 m/s at a bed sheet and is brought to rest in 0.2 s. Show that the average amount of force on the egg is 10 N.

63. A railroad diesel engine weighs four times as much as a freight car. If the diesel engine coasts at 5 km/h into a freight car that is at rest, how fast do the two coast after they couple?

64. A comic-strip superhero meets an asteroid in outer space and hurls it at 100 m/s. The asteroid is a thousand times more massive than the superhero is. In the strip, the superhero is seen at rest after the throw. Taking physics into account, what would be his recoil speed? What is this in miles per hour?

65. A 5-kg fish swimming 1 m/s swallows an absent-minded 1-kg fish at rest. What is the speed of the large fish immediately after lunch? What would its speed be if the small fish were swimming toward it at 4 m/s?

Activity

66. Visit your local pool or billiards parlor and bone up on momentum conservation. Note that no matter how complicated the collision of balls, the momentum along the line of action of the cue ball before impact is the same as the combined momentum of all the balls along this direction after impact. Also, the components of momenta perpendicular to this line of action add to zero after impact, the same value as before impact in this direction. When rotational skidding, English, is imparted by striking the cue ball off center, rotational momentum, which is also conserved, somewhat complicates the analysis. But regardless of how the cue ball is struck, in the absence of external forces, both linear and rotational momentum are always conserved. Pool or billiards offers a first-rate exhibition of momentum conservation in action.